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Abstract— A compliant control model based on reinforcement
learning (RL) is proposed to allow robots to interact with the
environment more effectively and autonomously execute force
control tasks. The admittance model learns an optimal adjust-
ment policy for interactions with the external environment using
RL algorithms. The model combines energy consumption and
trajectory tracking of the agent state using a cost function.
Therein, an Unmanned Aerial Vehicle (UAV) can operate
stably in unknown environments where interaction forces exist.
Furthermore, the model ensures that the interaction process
is safe, comfortable, and flexible while protecting the external
structures of the UAV from damage. To evaluate the model
performance, we verified the approach in a simulation environ-
ment using a UAV in three external force scenes. We also tested
the model across different UAV platforms and various low-level
control parameters, and the proposed approach provided the
best results.

I. INTRODUCTION

UAVs have become increasingly popular because of their
high efficiency and sensitivity coupled with low costs. At
the same time, UAVs can be exposed to dangerous or
toxic environments, as they can complete interactive tasks in
nearly every conceivable workspace. Interaction tasks may
be diverse and in unknown environments. As such, UAVs
are used to manipulate unstructured environments through
contact, which may include assembly tasks [1], peg-in-hole
tasks [2], human-robot co-manipulation tasks [3], assisting
responders in search and rescue scenarios [4], impacting with
a vertical surface [5], connecting multiple UAVs with load
[6], etc. The dynamics of the aerial manipulator with un-
known disturbances was analyzed [7] , which provided much
probability for contacting with an environment. Conducting
complex tasks brings challenges for UAVs, especially if the
environment is unstructured and changeable, which requires
advanced interaction control. The force control characteris-
tics of UAVs can be described by the inertia, stiffness, and
damping parameters. To obtain good control performance, it
is necessary to have a deep understanding of the controller
design and manually adjust the parameters based on the task
characteristics. Cartesian impedance control is a classical
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Fig. 1. A UAV in the X configuration with four motors and four rotors.
The direction of motor rotation and the axis are shown in the picture.

interaction approach that was used by Lippiello et al. [8].
This provides a dynamic relationship between the external
generalized forces acting on the structure and the system
motion.

Interaction control can be used in Cartesian space to
control interactions of the end-effector with the environment
[9]–[11], such as with haptic exploration [12]. This can also
be used in joint spaces to enhance safety [13]–[15]. Cartesian
interaction control with null-space stiffness is based on sin-
gular perturbation [16] and a passive approach [17]. Research
on null-space interaction control in multi-priority controllers
[18], [19] ensures the convergence of task-space errors. The
proposed framework by Yu [20] could be extended to the in-
teraction control of slung load transported by multiple aerial
vehicles. Ott [21] described Cartesian interaction control and
its pros and cons for torque-controlled redundant robots.

Studying the interaction variations in human-like bipedal
walking suggests that variable interaction control can im-
prove gait quality and reduce energy loss [22]. Contact
between robots and humans allows the human to control
the contact forces by adjusting arm stiffness; contact forces
can be increased by making the individual’s arm stiffer and
vice versa [23]. The ability to change the system interaction
characteristics based on tasks is one of the key factors for
the good performance of biomechanical systems, such as
adaptivity and agility. Therefore, variable interaction control
has become a popular capability of modern robot interac-
tion operations, which is key to safely completing complex
operation tasks.

Robots could automatically change interaction control
parameters by interacting with an unknown environment
rather than manually adjust the complex parameter values
each time. This concept coincides with the idea of RL.
The main idea of RL is to find a policy with the highest
payoff function to meet current needs through continuous
interactive trial and error with the environment. This does
not need a priori knowledge, such as a complex model
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Fig. 2. Overall frame design, where the inputs of the network are the state errors and the outputs are the soft parameters for the admittance control to
fine-tune the reference trajectory.

of the controll system, which enables complex autonomous
compliant control. Many scholars have studied the use of
RL algorithms to learn parameter adjustment policies and
dynamically adapt the interaction characteristics of robots.

Dimeas and Aspragathos [3] enhanced the accuracy of
robot position control and reduced the energy required
through RL. The model-free variable interaction control algo-
rithm and forward neural network as the evaluator has given
robots human-like variable interaction control abilities [24].
A model-free RL method, called PI2, adjusts the reference
trajectory and interaction parameters simultaneously through
path integration for variable interaction control, which is
successful in a variety of high-dimension control applications
[25]. To get external forces, this paper performs periodic
predictions of the dynamic external forces using a force
estimation method [26]. Learning from demonstrations not
only allows robots to model manipulation tasks but also
allows automatic adaptation to unknown situations [27].

Martı́n [28] studied the effects of different action spaces
using deep RL and advocated for variable impedance control
in end-effector space as an advantageous action space for
constrained contact-rich tasks. An approach proposed for
dynamic environments is an adaptation policy that adjusts
the control gains of a standard impedance controller to reject
disturbances [29]. Many previous interactive control methods
could not adapt to multiple scenarios simultaneously or did
not consider different UAV platforms.

Our contributions can be summarized as follows:
• We establish a new criterion to evaluate the interaction

performance based on energy consumption and state
tracking principles.

• We propose a novel policy by combining force estimates
and a neural network that can output the variable
stiffness and damping parameters, which is trained via
RL.

• The proposed model has a certain robustness and can be
used across multiple scenes and UAV platforms. Good
results are achieved in different interaction force sce-
narios and dissimilar UAV platforms in the simulation
environment.

The remainder of this paper is organized as follows. The
background knowledge is described in Section II. The net-
work design and learning framework are outlined in Section

III. The results of the simulation environment are shown in
Section IV. Finally, the conclusion and future work are given
in Section V.

II. BACKGROUND

A. UAV Dynamics Model

The considered UAV is an X-configuration quadrotor, as
shown in Fig. 1. A body-fixed reference frame ΣΣΣb placed
at the UAV’s center of mass and an inertia reference frame
ΣΣΣi are defined. The UAV is an underactuated mechanical
system with six degrees of freedom but four independent
control inputs. The dynamic equations related to the UAV
are inferred by the Newton-Euler formulation as

mp̈ppb
b =−mSSS(wwwb

b)ṗpp
b
b +mRRRTggg+ fff b

b + fff b
u(·) (1)

ṘRR =RRRSSS(wwwb) (2)

IIIbẇwwb
b =−SSS(wwwb

b)IIIbwwwb
b +τττ

b
b +τττ

b
u(·) (3)

where m is the mass of the UAV, IIIb represents the inertia
tensor of the UAV, pppb

b ∈ R3 is the position of the UAV, RRR ∈
SO(3) is the rotation matrix representing the attitude of the
UAV, wwwb denotes the angular velocity of the UAV expressed
in ΣΣΣi, SSS(·) denotes the skew-symmetric matrix, ggg = [0 0 g]T

is the gravity vector with g= 9.81m/s2, fff b
b ∈R3 and τττb

b ∈R3

are the force and torque input vectors respectively, expressed
in ΣΣΣb, and fff b

u ∈R3 and τττb
u ∈R3 denote unknown forces and

moments based on the vehicle-aerodynamic and buoyancy
effects, imbalances caused by batteries and/or onboard sen-
sors, motion of a robotic arm (or other moving sensors, e.g.
a laser scanner on a pan-tilt mechanism) mounted on the
aerial platform, parametric uncertainties, wind gusts, flapping
dynamics [30], interactions with the environment, etc.

Fig. 3. An example of a UAV putting out a fire
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B. Force Estimate

Due to the dynamic formulation of the UAV, we use an
estimator of the unmodeled dynamics and external wrench
(forces and torques) that acts on the UAV to compensate for
some disturbance effects [26]. The expression of the estimate
external wrench and unmodeled dynamic rrr(t) = [ f̂ff u

T
τ̂ττu

T ] ∈
R6×1 in the time domain is defined as:

rrr(t) =KKK1(
∫ t

0
−rrr(σ)+KKK2(qqq(σ)−

∫ t

0
(rrr(σ)

+

[
−uRRRiii3 +mggg

τττb
b −SSS(wwwb

b)IIIbwwwb
b

]
)dσ)dσ)

(4)

where KKK1 and KKK2 are positive definite diagonal matrices,
qqq(σ) is the momentum vector of the dynamics system,
iii3 = [0 0 1]T , and u represents the thrust perpendicular to
the propeller rotation plane. We use this force estimator to
replace the 6D force/torque sensor.

C. Impedance and Admittance Control

In interactive control, the robot can express the impedance
ideally as:

MMM ¨̃pppb +DDD ˙̃pppb +KKKp̃ppb = rrr(t) (5)

where MMM ∈R6×6 is a desired positive definite diagonal inertia
matrix, DDD ∈ R6×6 is a desired positive definite diagonal
damping matrix, KKK ∈ R6×6 is a desired positive definite
diagonal stiffness matrix, and p̃ppb ∈R6 is the errors of position
and angle errors.

Compared with the impedance controller, the admittance
controller can decouple impedance control from motion
control actions to better offset uncertainty in the original
control model. The admittance controller could be readily
implemented on an existing control loop. During motion,
the parameters of the admittance controller can be updated
to balance the tracking effect and improve safety.

D. Reinforcement Learning

Control in a continuous action space is difficult for RL, but
there have been significant advances using neural networks
with RL. The deep deterministic policy gradient (DDPG)
algorithm improves on the continuous action domain of the
deep q-network (DQN) [31], as it employs an actor-critic
architecture and uses two neural networks for each actor
and critic to learn a model-free policy. The trust region
policy optimization (TRPO) algorithm guarantees monotonic
improvements, although it is a policy gradient method. This
work selects the proximal policy optimization (PPO) method
[32] due to its use for UAV low-level control [33], and be-
cause it has outstanding performance in contact environments
[28]. While the PPO has similarities to the TRPO and is also
a policy gradient method, it is easier to implement and tune.

III. APPROACH

The training for the UAV to appropriately regulate the
desired damping and stiffness parameters is based on RL.
The RL approach is formalized as a markov decision pro-
cess(MDP), which is a discrete-time stochastic control. At
each time step t, the net observes the current state ssst of the

dynamic system and performs an action uuut by adjusting the
desired damping and stiffness parameters of the admittance
controller, which selects from a set of consecutive actions.
After applying these actions, the system arrives at a new state
ssst+1 and obtains a reward rt+1. The policy πππ determines the
actions at each state. The πππ is rated by a value function based
on the receiving rewards.

Noise processing of UAV sensor data is performed to in-
crease the model robustness. This can alleviate some negative
effects caused by unstable sensor data in actual processes.
We use a normal distribution function to simulate the sensor
noise data which is obtained from real UAVs. To train the
network policy, we add a certain range of random noise
to the quality and inertia of the UAV. Our model does not
need to train for the test scene in the experiment. Instead,
a circular trajectory is used during training, and the force
is a distribution, such as a cosine function. This is mainly
because the distribution of the cosine function is wider and
can cover more data than a single type of force, which is
true for the scene 1 and scene 2 mentioned later. In addition,
noise processing is also performed for the output actions of
the network, which could increase its exploration ability.

The PPO algorithm from RL is adopted here. As shown
in Fig. 2, the inputs of the network are the error values
of 18-dimensional, ssst = [p̃pp ˙̃ppp R̃RR w̃ww]. The inputs include the
errors of the position p̃pp ∈R3, linear velocity ˙̃ppp ∈R3, attitude
R̃RR∈R9(represented as a rotation matrix), and angular velocity
w̃ww ∈ R3. These errors are between the real values and the
reference values. The outputs are a map of the damping
and stiffness parameter values of the admittance controller,
which are 12-dimensional. The policy network is a fully
connected two-layer system, and the outputs of the net are
µ and σ . These are then the inputs of Gaussian model to
indirectly obtain the compliance control parameters. During
training, we add some action noise to increase the exploration
ability of the model. Hyperparameters of the network settings
are shown in Table I. This paper trains the network over
approximately 2000 episodes. Low-level control of the UAV
is based on a nonlinear controller [34]. In simulation the
network runs at 100 Hz and the dynamics integration is
executed at 200 Hz.

TABLE I
HYPERPARAMETERS OF THE PPO ALGORITHM

Batch size Hidden size Policy class Clip range
512 [64,64] GaussianMLPPolicy 0.05

IV. SIMULATION AND RESULTS

We perform simulations on the quadrotor dynamical sys-
tems and evaluate different scenarios to investigate the model
robustness. All network training is finished using the PPO
algorithm as the model-free policy optimization method. The
scenes include three situations: putting out a fire, fixed thrust,
and sliding along a wall. We compare our method with many
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other policies that include the min function, max function,
mid function, random function, and static random function.

The min function is in a fixed range, and we adopt the
minimum parameters at all times regardless of what the
environment is. In contrast, the max function is the maximum
of the parameters with a fixed range. The mid and rand
functions operate similarity with the median and random
parameter selection. The static random is a random param-
eter only in the first step but remains constant thereafter.
However, the parameters of the random function are variable
in every step. These approaches increase the credibility of
the simulation. We call our model policy “net” during the
simulations.

We fixed the parameters DDD and KKK with a certain range
to improve the system stability. As admittance control is
similar to a second-order spring-damped system, maintaining
stability requires a certain representation of the parameters
as:

D̂DD = 2ξξξωωω (6)

K̂KK =ωωω
2 (7)

where ωωω ∈ R6 and ξξξ ∈ R6 are the desired natural frequency
and damping of the designed estimator, D̂DD and K̂KK are the main
diagonal elements of DDD and KKK, respectively. The outputs of
the “net” are ωωω and ξξξ . The limitations of DDD and KKK could
transfer to the limitations of ωωω and ξξξ . The range of the
parameters is given in Table II, and the range of ξi by [35],
which represents the ith element of ξξξ . At the same time, ωi
represents the ith element of ωωω . We set ωi by testing the
dynamic model stability.

TABLE II
RANGE OF THE NATURAL FREQUENCY AND DAMPING

ωi ξi
Range [3,20] (0,1]

To ensure the robot can adapt to the environment under
interactive operation, we restrict contact forces and the
threshold of control gains to ensure safety. Small control
gains allow the system to have many desired characteristics,
like reduced wear, while high control gains make the system
stable. Usually a greater control gain gives additional energy
loss, which is also in line with the human variable admittance
regulation rules: as compliant as possible, only when the
task needs to increase rigidity. That is, we should ensure the
tracking accuracy and reduce the values of control gains.

An energy consumption term is used in the cost function to
ensure the robot applies variable admittance characteristics.
The admittance gain required to complete a task is reduced
by punishing the control action. The instantaneous cost
function of the admittance control gain is defined as:

RDK =−kdamp
∥∥D̂DD

∥∥2 − ksti f f ness
∥∥K̂KK

∥∥2
(8)

In addition, to ensure the trajectory tracking while being
compliant, it is necessary to limit trajectory errors. The state

error reward is defined as:

Rstate =−kpos ∥p̃pp̃ppp̃ppp∥2 − kvel
∥∥ ˙̃ppp̃̇ppp̃̇ppp

∥∥2 (9)

To maintain stability during flight, the number of collisions
and UAV stability are constrained as:

Rstable =−kcrashIcrashed − kacc
∥∥ ¨̃ppp̃̈ppp̃̈ppp

∥∥2 (10)

where Icrashed is the crashed representation of the UAV. If
the UAV crashes, the Icrashed is 1; otherwise, it is 0.

Therefore, the final reward is set as:

Rt = RDK +Rstate +Rstable (11)

A. Scene 1: Put out a Fire

Scene 1 is to put out a fire, which is similar to the
environment shown in Fig. 3. We used an impulse function
to simulate the scene with a force shown in Fig. 4 Scene 1.
The results are given in Table III, which illustrates that the
min and net policies are better. However, the reward of the
net policy is the best.

Fig. 4. The contact forces of different scenes. The x-axis represents the
time step and the y-axis is contact forces fff u = [ fu,x fu,y fu,z]. From top to
bottom, the data are from Scene 1, Scene 2, and Scene 3.
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TABLE III
POLICY REWARDS

Scene Policy Reward
Max -2956.950
Mid -1085.325
Rand -1066.797

StaticRand -1940.828
Min -137.471

Scene 1:
Putting
out a
fire

Net -119.768
Max -2972.560
Mid -1100.261
Rand -1074.317

StaticRand -292.382
Min -165.726

Scene 2:
Fixed
thrust

Net -159.631
Max -2970.676
Mid -1099.199
Rand -1132.636

StaticRand -2048.502
Min -159.280

Scene 3:
sliding
along

a
wall Net -155.654

B. Scene 2: Fixed Thrust

Scene 2 is a fixed thrust along the y-axis, where a static
forcing function is used in the simulation with details given
in Fig. 4 Scene 2. We assume that the force changes at a fixed
frequency. We use a fixed force in the y-axis of 1.4 N because
a larger external force would decrease the probability that
the UAV system could stabilize. The selected force is within
the stable threshold but it is not the maximum allowable
value. The force image is given in Fig. 4 Scene 2, where
the external force is zero in the first 500 steps and becomes
1.4 N from steps 500-1000. Between 1000 and 1500 steps,
the force again becomes zero. The force along all other axes
remains zero throughout the entire simulation. As shown in
Table III, the proposed net policy has the best reward.

Fig. 5. The end effector of a UAV contacts a surface and slides along
one direction. In the dashed box, the dashed arrow on the left points to
the surface of the wall, and the dashed arrow on the right points to the tip
of a rigid link driven by the UAV. The yw − yt represents the deformation
distance.

Fig. 6. Illustration of the various low-level controller parameters in the
three considered scenarios for different policy tests. From top to bottom,
the data are from Scene 1, Scene 2, and Scene 3. The specific values of the
min and net policies are marked on the top of the bar chart. The height of
the corresponding bar graph is the opposite number of the reward.

C. Scene 3: Sliding Along a Wall

Scene 3 is a UAV that slides along a wall. The external
force acting on the tool tip is considered as follows. The
interaction forces are from the surface along the positive
direction, and the friction forces oppose the direction of the
sliding motion on the surface. Here, the positions of the end
effector and the wall are given in Fig. 5. The interaction
forces from the surface are calculated as:

fu,y = kwall(yw − yt) (12)

where kwall is the elasticity coefficient of the wall, yt is
the position of the end effector along the y-axis, and yw
is the surface position of the wall along the y-axis. In this
simulation experiment, yw = 0. The surface friction forces,
have a function form of:

fff f riction =−µvtvtvt (13)

where µ is the coefficient of friction, and vvvt represents the
velocity of the end effector. In the contact model, the force
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Fig. 7. Comparison of the admittance strategies for different UAV platforms
and scenes.

exits only when the end effector tip (hereafter called tip)
penetrates to the surface. So the final external forces in this
scene are defined as:

fff =
{

fff f riction +[0 fu,y 0] , fu,y < 0
[0 0 0] , fu,y > 0 (14)

We first set the position of the tip to 0 while the target
position of the UAV along the y-axis is -0.05 m because
the tip should be in contact with the wall. During the initial
phase, the tip contacts the wall and quickly bounces off.
However, due to the 0.05 m y-axis goal, the tip attempts to
contact the wall again and slides upward along it. During
the entire simulation, the tip continuously bumps into the
wall and bounces off while moving upwards until leaving
the wall. The wall is assumed to have an infinite height.
Under different strategies, the external forces generated are
not completely consistent due to changes in the admittance
parameters. The force image of the min policy is shown in
Fig. 4 Scene 3. From Table III, the proposed net policy has
the best reward performance.

We adjusted the low-level control parameters in the sim-
ulation experiments with ten groups of parameters using
a nonlinear controller to prove the robustness of the net

policy. The results shown in Fig. 6 indicate that the proposed
net policy gives the best results. The x-axis represents the
parameters of the low-level control kp and kd , and the y-
axis is the opposite number of rewards. Further, the results
indicate that the stability of the net policy is not affected by
the low-level control parameters.

We also test using different UAV platforms, as shown in
Fig. 7. The x-axis represents the different UAV platforms, and
the y-axis is the opposite number of rewards. We change the
mass, inertial, and motor parameters of the UAV, as shown
in Table IV. The results indicate that the net strategy is still
optimal.

TABLE IV
UAV PLATFORM PARAMS

Mass(kg) Inertia Motor
(thrust2weight)

UAV1 1.557 [0.0091,0.0091,0.0141] 1.939
UAV2 0.654 [0.0039,0.0034,0.0063] 2.800
UAV3 0.018 [1.2e-5,1.4e-5,2.93e-5] 1.900

V. CONCLUSIONS AND FUTURE WORK
This paper presents a method for variable interaction

control based on RL. We propose an evaluation criterion
that considers the reward for integrating energy consumption
and trajectory tracking. The parameters of the network were
trained based on the proposed reward of admittance control.
Compared with a variety of other parameter generation
policies, the proposed net policy was optimal. Three possible
scenes were designed for the current network, and improved
result were obtained by the net policy in the simulations.
The adaptation of the net policy was proven by the different
parameters of the low-level control. At the same time, we
proved that the net policy was optimal for various UAV
models. Future work will consider relevant experimental
verifications on the visual environment platform and the
entity machine.
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