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Abstract
In this paper, the constrained control of systems evolving on matrix Lie groups
with uncertainties is considered. The proposed methodology is composed of a
nominal Model Predictive Control (MPC), and a feedback controller. The pre-
vious work on the control of systems on manifolds is applied to design the
nominal MPC, which generates the nominal trajectory. In the nominal MPC,
the state and input constraints on the Lie group are transformed into the con-
straints on the Euclidean space. While to deal with uncertainties, the feedback
control used to track the nominal trajectory is designed directly on the Lie group.
The tracking error in the feedback control is proved to be bounded in invari-
ant sets, which are further used to revise the constraints in nominal MPC. We
prove that the input-to-state stability of the entire system under the proposed
control methodology with respect to the disturbances can be achieved. The pro-
posed methodology is applied to the constrained attitude control of rigid bodies
with uncertainties. In the application example, the detailed mathematical proof
and the comparative numerical simulation are presented to demonstrate the
feasibility of the proposed methodology.
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1 INTRODUCTION

1.1 Motivation and background

Many systems are subject to constraints, including state and input constraints, and uncertainties. The state and input
constraints are critical. The uncertainties may let the system violate the state and input constraints, deteriorating the
safety of the system. How to address the state and input constraints under uncertainties is, therefore, a meaningful and
challenging problem.

The tube-based MPC is a useful tool that can deal with the state and input constraints of a dynamic system with
disturbances.1,2 Mayne et al. proposed the idea of tube-based MPC.1 As indicated in References 1, 3, in the tube-based
MPC scheme, the MPC is actually built upon the virtual nominal dynamics of the system. The output of the nominal
MPC does not directly apply on the real dynamics, but through a feedback control. Under such scheme, the stability of
the nominal system under constraints is easier to guarantee. By carefully designing the feedback control, the convergence
of the overall system can also be obtained. The tube-based MPC has aroused great interests in the past decades. Farina
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et al. investigated the tube-based robust sampled-data MPC for linear continuous-time systems.3 Nonlinear MPC for
tracking constant and dynamic reference signals based on tube-based MPC are also investigated.4-6 Mario E. Villanueva
et al. proposed min-max differential inequality to describe the support function of positive robust forward invariant tube
in tube-based MPC.7 V. Raković et al. investigated the safe polyhedral tubes constructed via simple algebraic operations.8
Cannon et al. proposed a stochastic tube-based MPC for linear systems.9 Trodden et al. proposed a switching tube-based
MPC to guarantee safe and stable operation of disturbed switching linear systems.10

Because of the progress in tube-based MPC, it has been applied to a variety of disturbed dynamic systems.11 Dimarog-
onas et al. investigated the decentralized control of uncertain nonlinear multi-agent systems using tube-based MPC.12,13

They also studied the constrained control problem of underwater vehicles by tube-based MPC.14 Chen et al. addressed
a trajectory-tracking control problem for mobile robots by combining tube-based MPC.15 Sakhdari et al. and Gao et al.
applied the tube-based MPC in autonomous vehicles to enhance the safety of the vehicle under uncertainties.16,17 Kobi-
larov et al. proposed a tube-based MPC whose tube is expressed by ellipsoids.18 Yue et al. proposed a robust tube-based
model predictive control for lane change maneuver of tractor-trailer vehicles.19 Lu et al. proposed a robust self-triggered
MPC scheme for linear systems based on the tube-MPC.20 Some researchers also applied tube-based MPC to the control
problem of networks, for example, Reference 21.

On the other side, the state space of many systems is non-Euclidean space. Due to the topological difference between
the non-Euclidean manifold and Euclidean space, control of systems with non-Euclidean configuration space is still a
challenging problem. The control methodology can mainly be categorized into the two groups: the coordinate-based
control and the geometric control.22,23 The former method usually replies on local coordinates of the Lie group. Taking
SO(3) as an example, the local coordinates include Euler angles,24 quaternions,25 exponential coordinates,23,26 and so
forth. Because of the topological obstacles, the global continuous control on non-Euclidean Lie groups usually does not
exist.27-29 To investigate the global control problem of systems on Lie groups, various methodologies have been proposed,
for example, the hybrid system theories are adopted to construct global but non-continuous tracking error which is further
used to design the global controller.30,31 Besides, by constructing the continuous tracking error, the geometric control
developed directly on the non-Euclidean Lie group can achieve almost global stability.32-35

Recent attempts to control systems on manifolds include the method by embedding the manifold into ambient
Euclidean space,36,37 where the design procedure is usually divided into two steps. First, the given manifold is embedded
into an ambient Euclidean space and the system dynamics is stably extended on the Euclidean space. Then the controller
is designed on the ambient Euclidean space. As the system dynamics on the manifold is stably extended, the stability of the
controlled system on the manifold can therefore be obtained. Such a methodology does not need a local coordinate chart
on the manifold, so it can avoid frequent problems induced by local coordinate charts. In the authors’ previous work, the
MPC on manifold via embedding is also considered.38 By stably extending the system dynamics from manifold to ambi-
ent Euclidean space, the MPC techniques on Euclidean space can be applied directly. However, the previous work does
not consider the uncertainties of the system, which may make the actual trajectory differs from the nominal trajectory. In
this way, the constraints of the systems may be violated. The constrained control problem of the system on the manifold
with uncertainties is therefore a meaningful problem. It is noted that there are some significant challenges to address this
problem for systems in non-Euclidean space. In order to guarantee the safety of the system, one may need to express the
tube, that is, the invariant set of the tracking error. However, the tube of the tracking error is not preserved anymore after
the extension of the dynamics from manifold to ambient Euclidean space. Therefore, it is difficult to express the tube if
we apply the control approach for systems on the manifold via embedding.

1.2 Contributions

In this paper, we aim to solve the constrained control problem for the systems evolving on the matrix Lie group with
uncertainties. We will extend the previous methodology which embeds the matrix Lie group into ambient Euclidean
space. Inspired by the methodology of tube-based MPC, the entire control framework is composed of a nominal MPC
and a feedback controller. We will design the nominal trajectory in the nominal MPC by extending the systems on the
Euclidean space, and the feedback controller directly on the Lie group. Considering the disturbance, the tube of the
tracking error on Euclidean space will also be defined. By transferring the tube from the Euclidean space to the Lie group,
we will show that in such a framework, the constraints of system can be ensured to be fulfilled. The overall methodology
is summarized as in Figure 1.
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SHI et al. 3287

F I G U R E 1 The proposed methodology of this paper. The nominal trajectory (dot-hashed line) is generated by nominal MPC on
Euclidean space. The actual trajectory falls in the invariant tube (red line). The actual feedback controller is designed on Lie groups. The
nominal trajectory converges to the reference trajectory asymptotically with the nominal MPC. While the actual trajectory always keeps in
the invariant tube along the nominal trajectory

A preliminary version was published in our previous work.39 The conference paper39 introduces the basic idea of this
paper. However, it does not include the formal results. In this work, we formally define the problem by introducing series
of definitions and assumptions which were not included in previous work.39 We thoroughly analyze the input-to-sate
stability of the system which was also not introduced in previous work.39 The input-to-state stability of systems on Lie
groups under the proposed control is the key part of the formal results. Different from Reference 39, the theoretical
completeness of this paper is guaranteed. Besides, the literature review and controller design are also incremented in this
paper compared to previous work.39 The comparison simulation which highlights the advantage of the proposed method
is also presented in this paper for the first time.

In summary, the contribution of this paper can be outlined as follows:

1. We propose a framework to address the constrained control problem for systems on matrix Lie groups with uncertain-
ties. The proposed methodology does not rely on any local coordinate set of the Lie group and can apply the existing
MPC technique on Euclidean spaces. The theoretical completeness of the proposed framework is guaranteed in the
problem definition.

2. The stability of the closed loop nominal systems on Lie groups is proved. Furthermore, the input-to-state stability of
systems on Lie groups under the proposed control approach with respect to disturbances is strictly obtained.

3. The proposed methodology is applied to the constrained attitude control of rigid bodies with uncertainties. In the
application example, the feasibility and advantage of the proposed methodology is demonstrated via comparative
simulation.

This paper is organized into five sections. Section 2 presents the background and the problem definition. In Section 3,
the framework of the tube-based MPC on the manifold is designed and analyzed. In Section 4, the proposed methodology
is applied to the constrained attitude control of rigid bodies. Conclusions are drawn in Section 5.

1.3 Notation

Given a matrix Lie group G and sets S1, S2 ⊂ G, we define the following set operations

S1 ⊙ S2 = {s1s2 ∶ s1 ∈ S1, s2 ∈ S2}
S1 ⊘ S2 = {s1 ∶ s2s1 ∈ S1,∀s2 ∈ S2}
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Also we define the following set operations for sets in Euclidean spaces,

S1 ⊕ S2 = {s1 + s2 ∶ s1 ∈ S1, s2 ∈ S2}
S1 ⊖ S2 = {s1 ∶ s2 + s1 ∈ S1,∀s2 ∈ S2} (1)

The group identity of the matrix Lie group G is denoted by I, and G is supposed to be embedded into a Euclidean space
Rn×n. The Lie algebra of G is denoted by 𝔤. The vector space Rn×n is split into two orthogonal subspace 𝔤 and 𝔤⊥ such
that Rn×n = 𝔤⊕ 𝔤⊥ where 𝔤⊥ is the orthogonal component of 𝔤 in Euclidean space Rn×n. We can define the orthogonal
projection maps from Rn×n to 𝔤 and 𝔤⊥ as,

R
n×n ∋ v → v⊥ ∈ 𝔤⊥,Rn×n ∋ v → v|| ∈ 𝔤. (2)

In general, for a variable ∗, the suffix ∗0 is used to describe the reference signal, the notation ∗ is used to denote the
nominal signal, while the notation with tilde ∗̃ is used to denote the error ∗ −∗.

Furthermore, let us define AdAB = ABA−1 for all A ∈ GL(n), B ∈ Rn×n. Then, Adg 𝜉 ∈ 𝔤 for all g ∈ G ⊂ GL(n) and
𝜉 ∈ 𝔤 ⊂ Rn×n, where G is a subgroup of GL(n) and 𝔤 is the Lie algebra of G. The Euclidean inner product on Rn×n is defined
by ⟨A, B⟩ = trace(ATB) for all A, B ∈ Rn×n. The norm of a matrix on Rn×n is given by ||x|| =

√
⟨x, x⟩, x ∈ Rn×n.

A continuous function fk ∶ [0, a) → [0,∞) is said to belong to class if it is strictly increasing and fk(0) = 0. A contin-
uous function fkl ∶ [0, a) × [0, 0) → [0,∞) is said to belong to class  if for each fixed s, the mapping fkl(r, s) belongs to
classwith respect to r and, for each fixed r, the mapping fkl(r, s) is decreasing with respect to s and fkl(r, s)→ 0 as s → 0.

For a dynamic system

ẋ = f (x, u)

where x ∈  is the state and u ∈  is the input. The system is called ISS (input-to-state stable) if there exist fkl ∈  and
fk ∈  such that for any initial state x(t0) and any bounded input u(t)40

||x(t)|| ≤ fkl (‖x (t0)‖ , t − t0) + fk

(

sup
t0≤𝜏≤t
||u(𝜏)||

)

for ∀t ≥ t0.

2 BACKGROUND AND PROBLEM FORMULATION

2.1 System dynamics and preliminaries

Systems evolving on an m-dimensional matrix Lie group G can be expressed by the following equation of motion (EOM),

ġ = g𝜉
̇

𝜉 = f (𝜉, u) + d, (3)

where g ∈ G, 𝜉 ∈ 𝔤, and u ∈ Rm, f (⋅, ⋅) is a vector field, d ∈ 𝔤 is the bounded disturbance induced by modeling uncertain-
ties, and external disturbances. We assume d satisfies ||d|| ≤ b1.

Remark 1. The second component in (3) is the dynamic equation. The disturbance is added in the dynamic equation. The
kinematic equation is given by the left invariant vector field on Lie group, and is regarded as a coordinate transformation
between the velocity and derivative of configuration. Although for disturbed systems, the measured configuration and
velocity may differ from the actual configuration and velocity, in the estimator it can let the estimated velocity and the
time derivative of estimated configuration satisfy the relationship reflected by the kinematic equation. Thus we do not
need to add disturbance on kinematic equation. Using such expression, the disturbance is actually counted in the dynamic
equation. Including the disturbance only on the inner loop is widely adopted in the literature.41-44
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SHI et al. 3289

Denote the reference trajectory of the system by

R ∋ t → (g0(t), 𝜉0(t)) ∈ G × 𝔤 (4)

and the corresponding reference input of the system by

R ∋ t → u0(t) ∈ R
m
. (5)

The reference state and input satisfy the system dynamics without disturbance,

ġ0 = g0𝜉0

̇

𝜉0 = f (𝜉0, u0). (6)

Assumption 1. There exist constants 𝛽gmax ≥ 𝛽gmin > 0 such that any g ∈ G satisfies 𝛽gminI ≼ ggT
≼ 𝛽gmaxI.

Assumption 2. The reference trajectory g0 is smooth. The reference input u0 can be solved from g0 and ġ0.

Assumption 2 is satisfied for systems such as the deferentially flat systems.45

Assumption 3. There exists a C2 function

R
n×n ∋ x → V(x) ≥ 0 ∈ R

with the following properties:

(a) V−1(0) = G,
(b) V(gx) = V(x) for all x ∈ Rn×n, g ∈ G,
(c) ∇2V(I) is positive definite in the transversal direction, that is, ∇2V(I) ⋅ (y, y) > 0 for all y ∈ 𝔤⊥ ⧵ 0.

Remark 2. It is often the case that G is expressed as a level set G = F−1(c0) of a function F ∶ Rn×n → R𝓁 for some c0 ∈ R𝓁 ,
where F is also G-invariant, that is, F(gx) = F(x) for all g ∈ G and x ∈ Rn×n. In this case, we can choose V as V(x) =
k||F(x) − c0||

2 with k > 0. For example, for rotation matrices we can use F(R) = RTR for R ∈ {A ∈ R3×3| det A > 0} so that
SO(3) = F−1(I) and V(R) = k||RTR − I||2.

Under Assumption 3, we extend the system dynamics (3) to the ambient Euclidean space Rn×n by embedding the
matrix Lie group G into the Euclidean space Rn×n as

ẋ = x𝜉 − 𝛼∇V(x)
̇

𝜉 = f (𝜉, u) + d, (7)

where x ∈ Rn×n, 𝛼 > 0.

The tracking error trajectory can be defined on the Euclidean space accordingly

R ∋ t → (E(t),Ξ(t)) ∶= (xg−1
0 − I, 𝜉 − 𝜉0) ∈ R

n×n × 𝔤. (8)

If we let the trajectory of the system (3) track the reference trajectory, the tracking error dynamics of (3) can therefore
be expressed as

̇E = (g0 + Eg0)Ξg−1
0

̇Ξ = f (Ξ + 𝜉0, u) − f (𝜉0, u0) + d. (9)
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3290 SHI et al.

It is noticed that the system (9) also evolves on the Lie group, not on the Euclidean space. By applying the technique
of embedding the matrix Lie group G into Euclidean space Rn×n, we can obtain the following equation evolving on
Rn×n ×Rm,

̇E = (g0 + Eg0)Ξg−1
0 − 𝛼∇V(g0 + Eg0)g−1

0
̇Ξ = f (Ξ + 𝜉0, u) − f (𝜉0, u0) + d. (10)

In this way, we say that the tracking error dynamics of (3) is embedded into the Euclidean space stably.

2.2 Problem formulation and overall control architecture

In this paper we will consider the control problem of dynamic systems evolving on matrix Lie groups, under state
constraints, input boundedness, and uncertainties. The control problem can therefore be expressed as follows.

Problem 1. Consider the system evolving on matrix Lie groups governed by the EOM (3). Given specific configuration
constraint g ∈  , and specific velocity constraint 𝜉 ∈  , input constraint u ∈  , for reference state and input (g0, 𝜉0) ∈
 ×  ⊂ G × 𝔤, deign control input u ∶ R ∋ t → u(t) ∈ Rm which guarantees the tracking error ISS at origin with respect
to disturbance d, while fulfilling all the above constraints for all disturbance satisfying (3).

The configuration error E can further be divided into the parallel direction error E|| and the transversal direction error
E⊥. Given the reference trajectory g0(t) satisfying 𝛼1I ≼ g0(t)g0(t)T ≼ 𝛼2I for all t, we linearize (10) along the reference
trajectory, the tracking error dynamics can be expressed as,

̇E⊥ = −𝛼((∇2V(I) ⋅ E⊥)(g0g⊥

0 )
−1)⊥

̇E|| = g0Ξg−1
0 − 𝛼 (∇2V(I) ⋅ E⊥)(g0gT

0 )
−1)||

̇Ξ =
𝜕f
𝜕𝜉

(𝜉0, u0)Ξ +
𝜕f
𝜕u

𝛿u + d, (11)

where 𝛿u = u − u0.
As stated in Reference 36, the first equation in (11) is exponentially stable at the origin. It is also possible to

design control based on the linearized system (11). However, in order to solve Problem 1, we need to carefully con-
sider the set of tracking errors, which may influence the admissible input and state set. As it is difficult to estimate
the boundedness of the tracking error for the linearized system, we will therefore develop a methodology which gen-
erates the nominal trajectory based on (11), and tracks the nominal trajectory based on (3) directly. More specially, a
virtual dynamics which is the nominal dynamics by excluding the disturbance from (11) will be used to design the
nominal MPC on the ambient Euclidean space. As the generated nominal trajectory always lies in the Lie groups,
the actual dynamics (3) is then used to design the actual controller on Lie groups. In this way, the invariant tube
representing the tracking error between the actual and nominal trajectory can be obtained to revise the admissible
state and input set in the nominal MPC. The overall architecture of the proposed control methodology is depicted in
Figure 2.

In the proposed control scheme, the feasibility and stability of the nominal closed loop system can be achieved with-
out considering the uncertainties, as the nominal system is independent from the uncertainties. However, the actual
system depends on the uncertainties d. By showing how the actual system converges to the nominal trajectory under
uncertainties, the ISS of the overall system can be proved accordingly.

Assumption 4. There exist constants 𝛽amax ≥ 𝛽amin > 0 and 𝛽bmax ≥ 𝛽bmin > 0 such that the following inequality holds
for the linearized dynamics along the nominal trajectory

𝛽amin ≤
‖
‖
‖
‖

𝜕f
𝜕𝜉

‖
‖
‖
‖
≤ 𝛽amax, 𝛽bmin ≤

‖
‖
‖
‖

𝜕f
𝜕u
‖
‖
‖
‖
≤ 𝛽bmax. (12)
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F I G U R E 2 The architecture of the overall proposed system

3 CONTROL SCHEME DESIGN

3.1 Nominal MPC on ambient euclidean space

By excluding the disturbance from the actual system, the nominal EOM of the system is given by,

̇g = g𝜉
̇

𝜉 = f (𝜉, ū) (13)

where the overbar ∗ represents the nominal value.
We will solve Problem 1 inspired by the idea of tube-based MPC. The tube-based MPC is composed of a nominal

MPC and a feedback controller. The nominal MPC is designed from the nominal tracking error dynamics. By embed-
ding the nominal EOM into Euclidean space, we design the nominal tracking error as ̄E = xg−1

0 − I ∈ Rn×n
,Ξ = 𝜉 − 𝜉0.

Then excluding the disturbance from (11), the nominal tracking error dynamics embedded into the Euclidean space is
obtained as,

̇
̄E = (g0 + ̄Eg0)Ξg−1

0 − 𝛼∇V(g0 + ̄Eg0)g−1
0

̇Ξ = f (Ξ + 𝜉0, u) − f (𝜉0, ū0). (14)

Also, we linearize (14) along the reference trajectory and obtain,

̇
̄E
⊥

= −𝛼((∇2V(I) ⋅ ̄E⊥)(g0g⊥

0 )
−1)⊥

̇
̄E
||
= g0Ξg−1

0 − 𝛼 (∇2V(I) ⋅ ̄E⊥)(g0gT
0 )
−1)||

̇Ξ =
𝜕f
𝜕𝜉

(𝜉0, u0)Ξ +
𝜕f
𝜕u

𝛿u. (15)

In the nominal MPC design, we define the initial tracking error ̄E = E and Ξ = Ξ, that is, we let g = g and 𝜉 = 𝜉 at the
initial time. The purpose of the nominal MPC is to let ̄E|| converge to the origin while satisfying the nominal input and
state constraints.
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3292 SHI et al.

To deal with the state and input constraints, we express the admissible set of the configuration and velocity error as
 e and  e, and express the admissible control input set as ̄Ue. Then the nominal MPC is written as,

min
𝛿u(s)

J(𝜁, 𝛿u) = 𝜙r(𝜁(tk + 𝛤 )) +
∫

tk+𝛤

tk

Nr(𝜁(s), 𝛿u(s))ds

s.t. ̇
̄E
||
= g0Ξg−1

0 − 𝛼 (∇2V(I) ⋅ ̄E⊥)(g0gT
0 )−1
)||

̇Ξ =
𝜕f
𝜕𝜉

(𝜉0, u0)Ξ +
𝜕f
𝜕u

𝛿u

( ̄E||,Ξ) ∈  e × e, 𝛿u(s) ∈  e, 𝜁(tk + 𝛤 ) ∈ Ωr (16)

where 𝜁 = (E||,Ξ) is the state, 𝜙r(⋅) and Nr(⋅) are positive definite functions used to ensure the stability of the MPC, Ωr is
the terminal set will be defined later. Notice that  e,  e, and e will be derived later, according to the actual admissible
state and input set, as well as the feedback controller.

In order to derive the stability of the system, we introduce the following lemma which is trivial from the Lyapunov
second theorem.36

Lemma 1. If u = u(t, x) is an asymptotically tracking controller for the ambient system (15) for the reference trajectory x0(t),
then it is also an asymptotically tracking controller for the system (14) on G for the same reference trajectory.

3.2 Feedback control for the disturbed system on matrix Lie groups

The nominal MPC can generate the nominal trajectory of the system on the matrix Lie group. Suppose the nominal
error trajectory is given by R ∋ t → ( ̄E,Ξ), and the nominal input error trajectory is denoted by R ∋ t → 𝛿u(t) ∈ Rm. Then
the nominal state trajectory is obtained as g = ( ̄E + I)g0, 𝜉 = 𝜉0 + Ξ, and the nominal input trajectory is obtained as ū =
u0 + 𝛿u.

It is noted that using the nominal MPC, the generated nominal state trajectory is already restricted on the matrix Lie
group. Therefore, we design the feedback control for the actual systems on the matrix Lie group directly.

For the actual system with uncertainties, it is necessary to design the tracking error carefully. We first define the
tracking error between the nominal state and the actual state as ̃E = gg−1 − I, ̃Ξ = 𝜉 − 𝜉. The feedback controller should
ensure the boundedness of the tracking error ( ̃E,

̃Ξ) and the input error ũ = u − ū so that the constraints in the nominal
MPC can be derived from the actual admissible input and state sets.

As the nominal trajectory always evolves on the matrix Lie group, the feedback controller can be designed in a cascaded
format. Given the nominal trajectory generated by the nominal MPC, design the velocity 𝜉r which is the output of the
outer loop controller such that

Adg(𝜉r − 𝜉) = −kg( ̃E
T
̃E + ̃ET)|| (17)

where kg is a positive constant.
In order to design the control law of the inner loop, we first construct the isomorphic map from 𝔤 to Rm. Suppose

the basis of 𝔤 is {𝜎i}, i = 1, · · · , m, the isomorphic map from 𝔤 to Rm can be defined by the coordinates of x ∈ 𝔤 under
{𝜎i} as,

S(x) ∶ 𝔤 ∋ x → xS ∈ R
m (18)

where xS = (xS
1 , xS

2 , · · · , xS
m)T , and xS

i is subject to x = Σm
i=1xS

i 𝜎i.
The inverse of the above isomorphic map S(⋅) can be defined accordingly. We denote the inverse map as S−1(x) ∶ Rm ∋

x → xI ∈ 𝔤.
Hence, the system dynamics (3) can be written with respect to 𝜉

S as,

̇

𝜉

S = f S(𝜉, u) + dS ∶= f2(𝜉S
, u) + dS

. (19)
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SHI et al. 3293

The disturbance term dS in (19) is related to the disturbance term d in (3) as follows:

dS = S(d).

Hence, with bS
1 ∶= b1||S|| where b1 is the assumed bound on ||d||, we have

||dS|| ≤ bS
1 . (20)

Then we design the following control law of the inner loop to let 𝜉 track 𝜉r,

u = ur − k
𝜉
(𝜉S − 𝜉

S
r ) (21)

where ur is obtained by inverting ̇

𝜉r = f (𝜉r, ur), and k
𝜉

is a positive constant.

Lemma 2. [ 46] Given two vectors x, y ∈ Rn their line segment is defined by Ls(x, y) ∶= {𝜉 ∶ 𝜉 = 𝜃x + (1 − 𝜃)y, 0 < 𝜃 < 1}.
Consider a vector valued function h ∶ Rn → Rm. Assume that h is differentiable on an open set S ⊆ Rn. Let x, y two points of
S such that Ls(x, y) ⊆ S. Then, there exist constant vectors c1, · · · , cm ∈ Ls(x, y) such that,

h(x) − h(y) =

[ m∑

k=1

n∑

j=1
lm(k)ln(j)T

𝜕hk(ck)
𝜕xj

]

(x − y)

where hk represents the k-th component of the vector valued function h, xj represents the j-th component of x, and the vector
ln(i) ∈ Rn is defined by

ln(i) =
⎡
⎢
⎢
⎣

0, · · · , 0, 1
⏟⏟⏟

i-th element

, 0, · · · , 0
⎤
⎥
⎥
⎦

T

.

In order to apply Lemma 2, we define the following function J(𝜉S
r , u) which is a linear map from Rm ×Rm to Rm,

J(𝜉S
r , u) =

m∑

k=1

m∑

j=1
lm(k)lm(j)T

𝜕f2,k(𝜉S
r , u)

𝜕uj

where f2,k represents the k-th component of the vector valued function f2(⋅) in (19), uj represents the j-th component
of u.

Assumption 5. There exists a positive constant Jmin such that

𝜆min

(
J(𝜉S

, u) + JT(𝜉S
, u)

2

)

≥ Jmin,∀𝜉 ∈  , u ∈  (22)

where 𝜆min(A) represents the minimum eigen-value of matrix A.

Assumption 6. The function f2(⋅, u) is Lipchitz continuous, that is,

||f2(𝜉S
1 , u) − f2(𝜉S

2 , u)|| ≤ L1||𝜉
S
1 − 𝜉

S
2 ||,∀𝜉1 ∈  , 𝜉2 ∈  , u ∈  (23)

where L1 is the Lipchitz constant of the function f2(⋅, u).

Remark 3. Assumption 5 actually requires
(

J(𝜉S
r ,u)+JT (𝜉S

r ,u)
2

)

is positive definite. This is a sufficient condition for the con-
trollability of systems, and is satisfied by many mechanical systems, the work of Reference 47 is such an example. As
J(𝜉S

, u) can be derived from the dynamics explicitly, given the equation of the dynamics, we can verify if Assumption 5 is
satisfied. And Assumption 6 is a common assumption for system dynamics.
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3294 SHI et al.

We then define an intermediate tracking error 𝜉e ∶= 𝜉 − 𝜉r. From (19) and Lemma 2, there are c1, c2, ..., cm ∈ Ls(u, ur)
such that the velocity tracking error dynamics is subject to,

̇

𝜉

S
e = f2(𝜉S

, u) − f2(𝜉S
r , u) + f2(𝜉S

r , u) − f2(𝜉S
r , ur) + dS

= f2(𝜉S
, u) − f2(𝜉S

r , u) +

[ m∑

k=1

m∑

j=1
lm(k)lm(j)T

𝜕f2,k(𝜉S
r , ck)

𝜕uj

]

(u − ur) + dS (24)

where the definition of f2,k is given after Lemma 2.
Defining 𝜑1 = 1

2
⟨𝜉S

e , 𝜉
S
e ⟩, from Assumptions 5 and 6, we arrive at,

𝜑̇1 = ⟨𝜉S
e , ̇

𝜉

S
e ⟩

≤ L1||𝜉
S
e ||

2 + ⟨𝜉S
e , J(𝜉S

r , ck)(u − ur)⟩ + ⟨𝜉S
e , dS⟩

≤ L1||𝜉
S
e ||

2 − k
𝜉

J + JT

2
||𝜉S

e ||
2 + ⟨𝜉S

e , dS⟩

≤ −(k
𝜉
Jmin − L1)||𝜉S

e ||
2 + 1

4𝜌g
||𝜉S

e ||
2 + 𝜌g(bS

1)
2 (25)

where 𝜌g is a positive constant. Then it is concluded that 𝜑̇1 < 0 if ||𝜉S
e || >

𝜌g

k
𝜉

Jmin−L1−
1

4𝜌g

bS
1. If we let ||𝜉e|| = 0 at the initial

instant, and suppose the control gains satisfy k
𝜉
Jmin − L1 − 1

4𝜌g
> 0, then the velocity tracking error 𝜉

S
e is bounded by

||𝜉S
e || ≤ bS

v ∶=
𝜌g

k
𝜉
Jmin − L1 − 1

4𝜌g

bS
1 (26)

which implies

||𝜉e|| ≤ bv (27)

where bv =
𝜌g

k
𝜉

Jmin−L1−
1

4𝜌g

bS
1||S

−1|| is calculated from bS
v based on the map S(⋅) defined in (18).

Then we have the following proposition.

Proposition 1. Consider system (3). Suppose the nominal state and input trajectory are generated by solving (16), the
control law (17) and (21) are used to track the nominal state, the control gains are appropriately selected such that
k
𝜉
Jmin − L1 − 1

4𝜌g
> 0 and 2kg − 1

2𝜌
𝜉

> 0. Then the tracking error ̃E and 𝜉e converge to the positively invariant set ̃ΩE ∶=

⎧
⎪
⎨
⎪
⎩

̃E ∶ ||( ̃ET
̃E + ̃ET)|||| ≤

√
2𝜌

𝜉

bv
√

2kg−
1

2𝜌
𝜉

⎫
⎪
⎬
⎪
⎭

, ̃Ω
𝜉
∶= {𝜉e ∶ ||𝜉e|| ≤ bv}.

Proof. We define the candidate Lyapunov function as,

𝜑2 = ||gg−1 − I||2 = ⟨gg−1 − I, gg−1 − I⟩. (28)

Then, taking the time derivative of 𝜑2 yields,

𝜑̇2 = 2⟨ ̃E, g(𝜉 − 𝜉)g−1
⟩

= 2⟨ ̃E, g(𝜉 − 𝜉r)g
−1
⟩ + 2⟨ ̃E, g(𝜉r − 𝜉)g−1

⟩

= 2⟨ ̃E, gg−1Adg𝜉e⟩ + 2⟨ ̃E, gg−1Adg(𝜉r − 𝜉)⟩

= 2⟨ ̃E, ( ̃E + I)Adg𝜉e⟩ + 2⟨ ̃E, ( ̃E + I)Adg(𝜉r − 𝜉)⟩

= 2⟨ ̃ET
̃E + ̃ET

, Adg𝜉e⟩ + 2⟨ ̃ET
̃E + ̃ET

, Adg(𝜉r − 𝜉)⟩

= 2⟨( ̃ET
̃E + ̃ET)||, Adg𝜉e⟩ + 2⟨( ̃ET

̃E + ̃ET)||, Adg(𝜉r − 𝜉)⟩. (29)
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SHI et al. 3295

Substituting (17) into (29) and applying Young’s inequality we have,

𝜑̇2 ≤ −2kg||( ̃E
T
̃E + ̃ET)||||2 + 1

2𝜌
𝜉

||( ̃ET
̃E + ̃ET)||||2 + 2𝜌

𝜉
||bv||

2

≤ −
(

2kg −
1

2𝜌
𝜉

)

||( ̃ET
̃E + ̃ET)||||2 + 2𝜌

𝜉
b2

v

where 𝜌
𝜉

is a positive constant. It is seen that 𝜑̇2 ≤ 0 if ||( ̃ET
̃E + ̃ET)|||| ≥

√
2𝜌

𝜉

bv
√

2kg−
1

2𝜌
𝜉

. If we also let ̃E = 0 at the initial instant,

it is then concluded that ̃ΩE ∶=
{

̃E ∶ ||( ̃ET
̃E + ̃ET)|||| ≤

√
2𝜌

𝜉

bv
√

2kg−
1

2𝜌
𝜉

}

is a positively invariant set for the closed-loop system

under the control law (17) and (21). ▪

Remark 4. From the proof procedure we can also conclude that ̃E converges to the set
{

̃E ∶ || ̃ET
̃E + ̃ET

|| ≤

√
2𝜌

𝜉

bv
√

2kg−
1

2𝜌
𝜉

}

.

And from the definition of ̃E we can write || ̃ET
̃E + ̃ET

|| as,

|| ̃ET
̃E + ̃ET

|| = || ̃ET( ̃E + I)|| = || ̃ETgg−1
|| =
√

tr( ̃ETgg−1(gg−1)T ̃E). (30)

As gg−1 ∈ G, from Assumption 1 the following equation holds,

𝛽gminI ≼ gg−1(gg−1)T ≼ 𝛽gmax. (31)

Then we have,

𝛽gmintr( ̃ET
̃E) ≤ tr( ̃ETgg−1(gg−1)T ̃E) ≤ 𝛽gmaxtr( ̃ET

̃E). (32)

Hence || ̃ET
̃E + ̃ET

|| ≤

√
2𝜌

𝜉

bv
√

2kg−
1

2𝜌
𝜉

implies || ̃E|| ≤
√

2𝜌
𝜉

bv
√

𝛽gmin

(

2kg−
1

2𝜌
𝜉

) .

3.3 Constraints revision from tube

The MPC synthesis should consider the revision of the admissible sets of state and control. As we have shown, the feedback
control law is designed such that the tracking error and the input fall into the invariant tube, the state and input constraints
for the nominal system can be revised accordingly. In this way, the constraints of the actual system are guaranteed in the
presence of tracking error induced by the uncertainties.

From the configuration tracking error invariant set ̃ΩE, the invariant set of g̃ = gg−1 can be obtained as ̃Ωg = ̃ΩE ⊕ {I}.
Then the admissible set of g can be derived as  =  ⊘

̃Ωg, and the admissible set of ̄E is expressed as  e =  ⊙ g−1
0 (t)⊖

{I}, from which we can further derive the admissible set of the nominal parallel tracking error 
||

e . And combining the
results of the previous subsections, the admissible sets used to express the constraints in the nominal MPC can therefore
be revised as,

 e = e ⊖ ( ̃Ω
𝜉
⊕ kg ̃ΩE), e = e ⊖ k

𝜉

̃Ω
𝜉

(33)

where Ue and e are given by

e =  ⊖ u0(t),e =  ⊖ 𝜉0(t). (34)

Remark 5. As stated after (15), in order to synthesize the tube-based MPC, the initial nominal state is set to g = g and
𝜉 = 𝜉. In this case, solving the nominal MPC (16) on Euclidean space, the nominal tracking error ̄E and 𝜉 will converge to
origin, while fulfilling the nominal constraints. This means that the nominal state and the nominal input will converge
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3296 SHI et al.

to the reference trajectory while fulfilling the nominal constraints. And as seen from Proposition 1, the error ̃E and ̃

𝜉

is bounded in a small region containing origin. Then applying (33), the actual constraints can be ensured to fulfill. The
detailed algorithm to synthesize the tube-based MPC will be presented via an application example in next section.

3.4 Terminal controller for nominal system

Definition 1. Consider the nominal system (15) on Euclidean space and the finite time optimal control problem (16).
The terminal controller 𝛿u and the terminal set Ωr are defined such that under the controller 𝛿u,

1. Ωr is a positively invariant set,
2. ̇

𝜙r + Nr(𝜁, 𝛿u) ≤ 0,
3. 𝛿u ∈  e for all 𝜁 ∈ Ωr.

In order to derive the recursive feasibility and stability of the controlled system, we consider the following control law
for the nominal system (15),

𝛿u =
(

𝜕f
𝜕u

)−1{

[Ξ, 𝜉0] + Y −
𝜕f
𝜕𝜉

(𝜉0, u0)Ξ
}

(35)

where Y = g−1
0

(

− ̇W + kp ̄E|| + kd(g0Ξg−1
0 +W)

)

g0 with W = −𝛼 (∇2V(I) ⋅ ̄E⊥)(g0gT
0 )
−1)||, kp and kd are positive constants

such that the matrix
[

0 I
kpI kdI

]

is Hurtwitz.
Define Ξ2 = g0Ξg−1

0 − 𝛼

(
(∇2V(I) ⋅ ̄E⊥)(g0gT

0 )
−1)||. Then substituting (35) into the nominal EOM (15) yields,

[
̇
̄E
||

̇Ξ2

]

=

[
0 I

kpI kdI

][
̄E||

Ξ2

]

. (36)

We define A =
[

0 I
kpI kdI

]

, since the matrix A is Hurwitz, by solving the Riccati equation ATP + PA = −I we can obtain

a positive symmetric matrix P.
From (15) it is seen that ̇W can be derived from the state of E⊥, E|| and Ξ. From the boundedness of ∇2V(I) and g0gT

0 ,
the following inequality holds by appropriately selecting the constant 𝛼,

||W|| ≤ 𝛾1|| ̄E⊥|| (37)

where 𝛾1 is a positive constant.
Similarly the following inequality holds by appropriately selecting the constant 𝛼,

||
̇W|| ≤ 𝛾2|| ̄E⊥|| (38)

where 𝛾2 is a positive constant.
Besides, we have the following inequality because of the boundedness of the reference trajectory,

[Ξ, 𝜉0] ≤ 𝛾3||Ξ|| (39)

where 𝛾3 is a positive constant.
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SHI et al. 3297

From the control law (35), we have,

||𝛿u|| ≤
1

𝛽amin
(𝛾3||Ξ|| + ||

̇W|| + kp|| ̄E|||| + kd||Ξ2||) +
𝛽bmin

𝛽amin
||Ξ||. (40)

From the definition of Ξ2 it is seen that

||Ξ|| ≤ ||Ξ2|| + ||W|| ≤ ||Ξ2|| + 𝛾1|| ̄E⊥||. (41)

Combining (40) and (41) we have,

||𝛿u|| ≤
1

𝛽amin
(𝛾3||Ξ2|| + 𝛾3𝛾1|| ̄E⊥|| + || ̇W|| + kp|| ̄E|||| + kd||Ξ2||) +

𝛽bmin

𝛽amin
||Ξ2|| +

𝛾1𝛽bmin

𝛽amin
|| ̄E⊥||

≤
1

𝛽amin
(𝛾3||Ξ2|| + 𝛾3𝛾1|| ̄E⊥|| + 𝛾2|| ̄E⊥|| + kp|| ̄E|||| + kd||Ξ2||) +

𝛽bmin

𝛽amin
||Ξ2|| +

𝛾1𝛽bmin

𝛽amin
|| ̄E⊥||

≤

(
𝛾3

𝛽amin
+ 𝛽bmin

𝛽amin

)

||Ξ2|| +
(

𝛾3𝛾1

𝛽amin
+ 𝛾2

𝛽amin
+ 𝛾1𝛽bmin

𝛽amin

)

|| ̄E⊥|| +
kp

𝛽amin
|| ̄E||||. (42)

Then we can further obtain,

||𝛿u||
2
≤ c1||Ξ2||

2 + c2|| ̄E⊥||2 + c3|| ̄E||||2 (43)

where

c1 =
(

𝛾3

𝛽amin
+ 𝛽bmin

𝛽amin

)2

+

(
𝛾3

𝛽amin
+ 𝛽bmin

𝛽amin

)(
𝛾3𝛾1

𝛽amin
+ 𝛾2

𝛽amin
+ 𝛾1𝛽bmin

𝛽amin

)

4𝜌1
+

(
𝛾3

𝛽amin
+ 𝛽bmin

𝛽amin

)
kp

𝛽amin

4𝜌2

c2 =
(

𝛾3𝛾1

𝛽amin
+ 𝛾2

𝛽amin
+ 𝛾1𝛽bmin

𝛽amin

)2

+ 𝜌1

(
𝛾3

𝛽amin
+ 𝛽bmin

𝛽amin

)(
𝛾3𝛾1

𝛽amin
+ 𝛾2

𝛽amin
+ 𝛾1𝛽bmin

𝛽amin

)

+

(
𝛾3𝛾1

𝛽amin
+ 𝛾2

𝛽amin
+ 𝛾1𝛽bmin

𝛽amin

)
kp

𝛽amin

4𝜌3

c3 =
( kp

𝛽amin

)2

+ 𝜌3

(
𝛾3𝛾1

𝛽amin
+ 𝛾2

𝛽amin
+ 𝛾1𝛽bmin

𝛽amin

) kp

𝛽amin
+ 𝜌2

(
𝛾3

𝛽amin
+ 𝛽bmin

𝛽amin

) kp

𝛽amin

with positive constants 𝜌1, 𝜌2 and 𝜌3.

Proposition 2. Consider the nominal tracking error system (15), define a set Ωr = {𝜁 ∶ 𝜙r = ⟨∇2V(I) ⋅ ̄E⊥

,
̄E⊥⟩ +

h1⟨ ̄E||aug, P ̄E||aug⟩ ≤ 𝜖r}, where E||aug =
[

E||
Ξ2

]

, h1 is a positive constant, and 𝜖r is a positive constant. Define the positive definite

function Nr = q1|| ̄E⊥||2 + q2|| ̄E||||2 + q3||Ξ||2 + r1||Δ𝜏||2, where the positive constants q1, q2, q3, r1, h1 are subject to

𝛼𝜆max(∇2V(I))
𝛽gmax

− q1 − r1c2 ≥ 0, h1 − q2 − r1c3 ≥ 0, h1 − q3 − r1c1 ≥ 0.

If 𝜁(tk + 𝛤 ) ∈ Ωr, the control law 𝛿u(s), s ∈ (tk + 𝛤 , tk+1 + 𝛤 )] is designed by (35), where the parameters are appropriately
selected, then the following propositions hold for all s ∈ (tk + 𝛤 , tk+1 + 𝛤 )],

1. Ωr is a positively invariant set,
2. ̇

𝜙r + Nr(𝜁, 𝛿u) ≤ 0,

3. 𝛿u ∈ S for all 𝜁 ∈ Ωr, where S =
{

𝛿u ∶ ||𝛿u||
2
≤ 𝜖r min

(
𝜆max(∇2V(I))

c2
,

h1𝜆m(P)
c1

,

h1𝜆m(P)
c3

)}

.
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3298 SHI et al.

Proof. From the Definition of 𝜙r, it is trivial to conclude that 𝜙r is positive definite.
Taking the time derivative of 𝜙r yields,

̇

𝜙r = −𝛼⟨∇2V(I) ⋅ E⊥

,

(
(∇2V(I) ⋅ E⊥)(g0gT

0 )
−1)⊥⟩ + h1⟨

̇
̄E
||

aug, P ̄E||aug⟩ + h1⟨ ̄E||aug, P ̇
̄E
||

aug⟩

= −𝛼
⟨

∇2V(I) ⋅ E⊥

,

(
(∇2V(I) ⋅ E⊥)(g0gT

0 )
−1)⊥
⟩

+ h1⟨A ̄E||aug, P ̄E||aug⟩ + h1⟨ ̄E||aug, PA ̄E||aug⟩

= −𝛼
⟨
∇2V(I) ⋅ E⊥

,

(
(∇2V(I) ⋅ E⊥)(g0gT

0 )
−1)⟩ + h1⟨ ̄E||aug, (ATP + PA) ̄E||aug⟩

≤ − 𝛼

𝛽gmax

⟨
∇2V(I) ⋅ E⊥

,

(
(∇2V(I) ⋅ E⊥)

)⟩
− h1
‖
‖
‖
̄E||aug
‖
‖
‖

2

≤ −𝛼𝜆max(∇2V(I))
𝛽gmax

|| ̄E⊥||2 − h1
‖
‖
‖
̄E||aug
‖
‖
‖

2
. (44)

Therefore, it is shown that ̇

𝜙r ≤ 0, indicating that Ωr is a positively invariant set.
Secondly, substituting the definition of Nr and (43) into the equation ̇

𝜙r + Nr we have

̇

𝜙r + Nr ≤ −
(

𝛼𝜆max(∇2V(I))
𝛽gmax

− q1 − r1c2

)

|| ̄E⊥||2 − (h1 − q2 − r1c3)|| ̄E||||2 − (h1 − q3 − r1c1)||Ξ2||
2
. (45)

It is seen that ̇

𝜙r + Nr ≤ 0 if the parameters are selected appropriately.
Thirdly, if 𝜁 ∈ Ωr, from (43) and the definition of Ωr it is obvious that 𝛿u ∈ S.
This completes the proof. ▪

Assumption 7. The reference trajectory (g0, 𝜉0, u0), the admissible state set  ×  , the admissible input set  , the
parameters in actual controller (21), and the parameters in control law (35) are designed such that Ωr ⊂  e ×  e, and
S ⊂  e.

Under Assumption 7 and from Proposition 2, it is seen that the terminal controller for the nominal system (15) can
be constructed by the control law (35).

3.5 Main results

By constructing the terminal controller of the nominal system, it is possible to conclude the feasibility and stability of
the nominal system, and then extend the results to the entire controlled system. We have the following theorem which
summarizes the recursive feasibility and ISS of the overall closed loop disturbed system.

Theorem 1. Consider the system dynamics (3). The nominal state 𝜁 and input 𝛿u is solved from the nominal finite time
optimal control problem (16). The feedback control law u is designed by (21). Suppose that at initial time instant the finite time
optimal control problem is feasible. Then the closed loop system is input-to-state stable (ISS) with respect to the disturbances.

Proof. The proof will be finished in two steps: the feasibility proof and the convergence proof.
First, let us prove the feasibility of the MPC problem recursively.
Assume at a sampling instant tk the solution for the optimal control problem (16) exists, denoted by 𝛿

∗
u,0(s), s ∈ [tk, tk +

𝛤 ]. According to the state constraints definition, the state 𝜁(s) stays in the admissible set  e ×  e for all s ∈ [tk, tk + 𝛤 ],
and 𝜁(tk + 𝛤 ) ∈ Ωr under the control of 𝛿

∗
u,0(tk).

Then for the time interval [tk+1, tk+1 + 𝛤 ]we can construct the following solution for the optimal control problem (16),

𝛿u,0,f =

{
𝛿

∗
u,0(s), s ∈ [tk+1, tk + 𝛤 ]

𝛿u,0,ter(s), s ∈ (tk + 𝛤 , tk+1 + 𝛤 ]
(46)

where 𝛿u,0,ter is designed by (35).
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SHI et al. 3299

As 𝛿u,0,ter defined by (35) is a terminal controller, according to Proposition 2, we can conclude that,

𝛿u,0,ter(s) ∈ S,∀s ∈ (tk + 𝛤 , tk+1 + 𝛤 ]. (47)

Similarly, according to Proposition 2 it is seen that under the control 𝛿u,0,ter we have,

𝜁(s) ∈ Ωr,∀s ∈ (tk + 𝛤 , tk+1 + 𝛤 ]. (48)

Combining (47) and Assumption 7 yields,

𝛿u,0,ter(s) ∈  e,∀s ∈ (tk + 𝛤 , tk+1 + 𝛤 ]. (49)

And Combining (48) and Assumption 7 we can conclude that under the control 𝛿u,0,ter,

𝜁(s) ∈  e ×  e,∀s ∈ (tk + 𝛤 , tk+1 + 𝛤 ], and 𝜁(tk+1 + 𝛤 ) ∈ Ωr. (50)

From (49) to (50) it is indicated that 𝛿u,0,f is a feasible solution for (16) in the time interval [tk+1, tk+1 + 𝛤 ].
Moreover, as the actual feedback controller is given by (21), by applying Proposition 1, it is concluded that,

𝜁(s) ∈ e × e,∀s ∈ [tk+1, tk+1 + 𝛤 ] (51)

and

𝛿u,0,f (s) ∈ e,∀s ∈ [tk+1, tk+1 + 𝛤 ]. (52)

Therefore, we can conclude that u(s) = u0(s) + 𝛿u,0,f (s), s ∈ [tk+1, tk+1 + 𝛤 ] is a feasible control of (3) to satisfy the state and
input constraints.

The above derivation shows that the feasibility of a solution of (16) at time tk implies the feasibility of that at time
instant tk+1. The feasibility of the solution of (16) at all time t > tk can thus be guaranteed recursively in this way.

Next, we consider the convergence of the closed loop overall system.
We define the following Lyapunov candidate of the closed loop nominal system,

V r = J(𝜁, 𝛿u). (53)

Then the difference of V r from the time instant tk to the time instant tk+1 is given by,

ΔV = V r(tk+1) − V r(tk)

=
∫

tk+1+𝛤

tk+1

[

Nr

(

𝜁 (s), 𝛿u(s)
)]

ds −
∫

tk+𝛤

tk

[

Nr

(

𝜁 (s), 𝛿u(s)
)]

ds

+ 𝜙r

(

𝜁 (tk+1 + 𝛤 )
)

− 𝜙r

(

𝜁(tk + 𝛤 )
)

=
∫

tk+1+𝛤

tk+𝛤

[

Nr

(

𝜁 (s), 𝛿u(s)
)]

ds −
∫

tk+1

tk

[

Nr

(

𝜁 (s), 𝛿u(s)
)]

ds

+ 𝜙r

(

𝜁 (tk+1 + 𝛤 )
)

− 𝜙r

(

𝜁(tk + 𝛤 )
)

. (54)

From Proposition 2, integrating ̇

𝜙r + Nr over [tk + 𝛤 , tk+1 + 𝛤 ] yields,

∫

tk+1+𝛤

tk+𝛤

[

Nr

(

𝜁 (s)
)]

ds + 𝜙r

(

𝜁 (tk+1 + 𝛤 )
)

− 𝜙r

(

𝜁 (tk + 𝛤 )
)

≤ 0. (55)
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3300 SHI et al.

Substituting (55) into (54) yields,

ΔV ≤ 0 (56)

Therefore, it is concluded that under the nominal MPC, the linearized nominal system (15) is asymptotically stable at
origin. From Lemma 1 it is seen that the nominal system (14) is also asymptotically stable under the nominal MPC.

From the stability of the closed loop nominal system, there exists class functions fkl1(⋅) and fkl1(⋅) such that,

|| ̄E|| ≤ fkl1(|| ̄E(0)||, t),∀t > 0 (57)

and

||Ξ|| ≤ fkl2(||Ξ(0)||, t),∀t > 0. (58)

Then we consider the actual system (3).
First consider the velocity error which satisfies,

Ξ = Ξ + ̃Ξ. (59)

From Proposition 1 the bound of ̃Ξ is obtained as,

|| ̃Ξ|| = ||𝜉 − 𝜉|| = ||𝜉e + 𝜉r − 𝜉|| ≤ ||𝜉e|| + ||𝜉r − 𝜉|| ≤
kg
√

2𝜌
𝜉
bv

√
2kg − 1

2𝜌
𝜉

+ bv. (60)

It is seen that there exists a class function fk1(⋅) such that,

|| ̃Ξ|| ≤ fk1(bS
1),∀t > 0 (61)

which implies that there exists a class function fk2(⋅) such that,

|| ̃Ξ|| ≤ fk2(b1),∀t > 0 (62)

where fk2(b1) ∶= fk1(b1||S||) is trivially a class  function. Finally, combining the result of (58), (59), and (62), it is seen
that ∀t > 0,

||Ξ|| ≤ ||Ξ(t) + ̃Ξ(t)|| ≤ ||Ξ(t)|| + || ̃Ξ(t)|| ≤ fk2(b1) + fkl2(||Ξ(0)||, t). (63)

Then we consider the configuration error. Similarly from Proposition 1 and Remark 4 it is seen that there exists a class
 function fk3(⋅) such that,

|| ̃E|| ≤ fk3(bS
1),∀t > 0. (64)

Then we have,

|| ̃E|| ≤ fk4(b1),∀t > 0 (65)

where fk4(b1) ∶= fk3(b1||S||) is also trivially a class function.
From the definition of the configuration error we have,

E = gg−1
0 − I = ( ̃E + I)( ̄E + I) − I = ̃E ̄E + ̄E + ̃E. (66)
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SHI et al. 3301

Taking the norm of the both sides of (66) we have,

||E|| ≤ || ̃E|||| ̄E|| + || ̄E|| + || ̃E|| ≤ 𝜌E|| ̃E||2 +
1

4𝜌E
|| ̄E||2 + || ̄E|| + || ̃E|| (67)

where 𝜌E is a positive constant.
We define fk5(|| ̃E||) ∶= 𝜌E|| ̃E||2 + || ̃E|| and fk6(|| ̄E||) ∶= 1

4𝜌E
|| ̄E||2 + || ̄E||. Both of fk5(⋅) and fk6(⋅) are class  functions,

then from (67) it is seen E satisfies,

||E|| ≤ fk5(|| ̃E(t)||) + fk6(|| ̄E(t)||) ≤ fk7(b1) + fkl3(|| ̄E(0)||, t),∀t > 0. (68)

It is seen that fk7 = fk5(fk4(⋅)) is a class function, and fkl3 = fk6(fkl1(⋅)) is a classL function.
Finally, from the definition of 𝜁 , as well as (63) and (68), we have the following equation which implies the ISS of the

entire system with respect to disturbances,

||𝜁(t)|| ≤ fk,𝜁 (b1) + fkl,𝜁 (||𝜁(0)||, t),∀t > 0 (69)

where fk,𝜁 (⋅) is a class function, and fkl,𝜁 (⋅) is a classL function. ▪

Remark 6. Theorem 1 shows the ISS of the system under the sampled nominal MPC and the continuous feedback con-
troller. However, the stability of time-varying sampled data system under the MPC law is still an open problem, and will
not be discussed in this paper.

4 APPLICATION EXAMPLE

In this section, we will take the rotational motion of the rigid body as an application example to illustrate the theoretical
results of this paper.

4.1 Rotational dynamics of rigid body

The attitude control of the rigid body is started from the rotational motion of the rigid body, which is given by,

̇R = R𝜔̂

𝜔̇ = M−1(𝜏 − 𝜔̂M𝜔) + dr (70)

where R ∈ SO(3) is the rotation matrix of the rigid body, 𝜔 ∈ R3 is the angular velocity, M ∈ R3×3 is the inertia tensor,
𝜏 ∈ R3 is the torque, and dr ∈ R3 is the disturbance bounded by ||dr|| ≤ br with positive constant br, and the hat map ∗̂
is an isomorphism from R3 to the Lie algebra so(3) of Lie group SO(3).48 For a vector a = (a1, a3, a3) ∈ R3, the hat map is
given by

â =
⎡
⎢
⎢
⎢
⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎥
⎥
⎥
⎦

.

The inverse map of the hat map is called the vee map and denoted by ∨ such that (x̂)∨ = x for all x ∈ R3. Consider-
ing a function W × R3 ∋ (X ,Ω) → V(X ,Ω) ∶= 1

4
||XTX − I||2 ∈ R, where W = {X ∈ R3×3| det X > 0}, then EOM (70) is

extended to R3×3 as,

̇X = X𝜔̂ − 𝛼X(XTX − I)
𝜔̇ = M−1(𝜏 − 𝜔̂M𝜔) + dr (71)

where (X , 𝜔) ∈ R3×3 ×R3.
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3302 SHI et al.

Given a reference trajectory,

R ∋ t → (R0(t), 𝜔0(t)) ∈ SO(3) ×R
3 (72)

and the corresponding reference input torque by

R ∋ t → 𝜏0(t) ∈ R
3 (73)

it is natural to define the error trajectory as,

R ∋ t → (E(t), e(t)) ∶= (X(t)R−1
0 − I, 𝜔(t) − 𝜔0(t))

∈ R
3×3 ×R

3
. (74)

By embedding the manifold into the Euclidean space, and splitting the tracking error E into parallel error E|| and
transversal error E⊥, we have the following linearized tracking error dynamics,

̇E⊥ = −2𝛼E⊥

̇E|| = R0êR−1
0

ė = M−1(Me × 𝜔0 +M𝜔0 × e) +M−1
𝛿
𝜏
+ dr (75)

where 𝛿
𝜏
= 𝜏 − 𝜏0. It has been proved that the first error dynamics of (75) is stable, while the second and third components

can be stabilized to zeros. Therefore, we can design the MPC from (75).
We suppose that the constraints on the attitude, angular velocity, and input are expressed as,

RRT
0 ∈  , 𝜔 ∈  , 𝜏 ∈ U. (76)

Then the admissible sets expressed with respect the error are given by

e ∈  ⊖ 𝜔0(t) ∶= e, 𝛿𝜏 ∈ U ⊖ 𝜏0(t) ∶= Ue. (77)

4.2 Feedback control and invariant set of tracking error

For the system constraints (77), we can design the nominal error trajectory using MPC. Suppose the nominal error trajec-
tory is given by R ∋ t → ( ̄E, ē), and the nominal input error trajectory is denoted by R ∋ t → (𝛿

𝜏
). Then the nominal state

and input trajectory is obtained as R = ( ̄E + I)R0, 𝜔 = 𝜔0 + ē, 𝜏 = 𝜏0 + 𝛿
𝜏
.

As shown in the previous section, we need to design a feedback control law to force the actual trajectory to track the
nominal trajectory (R, 𝜔, 𝜏), and the tracking error should be bounded in a robust invariant set, which is called the tube
of the tracking error. A cascaded structure feedback controller will also be considered for this purpose.

First, we design the following reference angular velocity for the feedback attitude control. As the system dynamics
always evolves on SO(3), we design the angular velocity 𝜔r such that,

AdR(𝜔̂r − ̂

𝜔) = −k1 ̃E
|| (78)

where ̃E|| = (RR
T
− I)|| = (RR

T
− RRT)∕2 is the parallel error between R and R, k1 is a positive constant. Note that R always

evolves on SO(3) for system (70).
Then design the body torque as,

𝜏 = 𝜏r − k2e
𝜔

(79)

where e
𝜔
= 𝜔 − 𝜔r, 𝜏r = M𝜔̇r + 𝜔̂rM𝜔r, and k2 is a positive constant.
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SHI et al. 3303

Let us consider the tracking error of the angular velocity of the rigid body. Substituting (78) into (70) yields,

ė
𝜔
= M−1

𝜏 −M−1
𝜔̂M𝜔 −M−1

𝜏r +M−1
𝜔̂rM𝜔r + dr

= M−1(𝜏 − 𝜏r) +M−1
𝜔̂rM𝜔r −M−1

𝜔̂M𝜔 + dr. (80)

Define a function 𝜂1(𝜔) ∶ {𝜔 ∈ R3 ∶ ||𝜔|| ≤ 𝜔m} ∋ 𝜔 → M−1
𝜔̂M𝜔 ∈ R3 with positive constant 𝜔m, then we have,

||𝜂1(𝜔) − 𝜂1(𝜔r)|| ≤ L2||e𝜔|| (81)

where L2 is the Lipchitz constant of the function 𝜂1(⋅).
In order to derive the results, we further define 𝜂2(𝜔) ∶ {𝜔 ∈ R3 ∶ ||𝜔|| ≤ 𝜔m} ∋ 𝜔 → 𝜔̂M𝜔 ∈ R3, hence we have

||𝜂2(𝜔r) − 𝜂2(𝜔)|| ≤ L3||𝜔r − 𝜔|| ≤ L3k1|| ̃E
||
|| (82)

where L3 is the Lipchitz constant of 𝜂2(⋅).

Proposition 3. Consider the system dynamics (70). The nominal state and input trajectory are represented by R(t), 𝜔(t), 𝜏(t).
Suppose the control torque is determined by the feedback control law (79). If the positive constants k1 and k2 satisfy

k1 −
1

4𝜌1
> 0,

k2𝜆(M)−1 − 𝜌1 −
1

4𝜌2
− L2 > 0

then the state tracking error and the input of the closed-loop system fall into the following sets,

̃E|| ∈ ̃ΩE|| = { ̃E
|| ∶ || ̃E|||| ≤ LR}

𝜔̃ ∈ ̃Ω
𝜔
= {𝜔̃ ∶ ||𝜔̃|| ≤ (k1 + 1)LR}

𝜏 ∈ ̃Ω
𝜏
= {𝜏 ∶ ||𝜏|| ≤ (||M||k1(k1 + 1) + L3k1 + k2)LR} (83)

where k5 =
k3

k4
, LR =

√
𝜌2

min(𝛽1,𝛽2)
br, 𝛽1 = k1 −

√
2

4𝜌1
, 𝛽2 = k2𝜆(M)−1 − 𝜌1 − 1

4𝜌2
− L2 with positive constants 𝜌1, 𝜌2, 𝜆(M) is the

minimum eigenvalue of M.

Proof. We define the following Lyapunov candidate as,

Φ = 1
2
|| ̃E||2 + 1

2
||e

𝜔
||2 (84)

which is positive definite. From (78), (79) and (80), we can obtain the time derivative of Φ,

̇Φ = ⟨ ̃E,

̇
̃E⟩ + ⟨e

𝜔
, ė

𝜔
⟩

= ⟨ ̃E, AdR(𝜔̂ − ̂

𝜔)⟩ + ⟨e
𝜔
, ė

𝜔
⟩

= ⟨ ̃E, AdRê
𝜔
⟩ + ⟨ ̃E, AdR(𝜔̂r − ̂

𝜔)⟩
− k2⟨e𝜔, M−1e

𝜔
⟩ + ⟨e

𝜔
, 𝜂1(𝜔r) − 𝜂1(𝜔)⟩ + ⟨e𝜔, dr⟩

≤

√
2|| ̃E||||||e

𝜔
|| − k1|| ̃E

||
||2 − k2𝜆(M)−1||e

𝜔
||2 + L2||e𝜔||2

+ ||e
𝜔
||||dr||

≤ −

(

k1 −
√

2
4𝜌1

)

|| ̃E||||2

−
(

k2𝜆(M)−1 − 𝜌1 −
1

4𝜌2
− L2

)

||e
𝜔
||2 + 𝜌2b2

r . (85)
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Taking 𝛽1 = k1 −
√

2
4𝜌1

and 𝛽2 = k2𝜆(M)−1 − 𝜌1 − 1
4𝜌2
− L2, if the parameters are selected such that 𝛽1 > 0 and 𝛽2 > 0,

then

̇Φ ≤ −min(𝛽1, 𝛽2)||( ̃E
||
, e

𝜔
)||2 + 𝜌2b2

r . (86)

It is seen that ̇Φ < 0 if ||( ̃E||, e
𝜔
)|| >
√

𝜌2
min(𝛽1,𝛽2)

br. The bound of ̃E|| and e
𝜔

can be expressed as,

|| ̃E|||| ≤ ||( ̃E||, e
𝜔
)|| ≤ LR,

||e
𝜔
|| ≤ ||( ̃E||, e

𝜔
)|| ≤ LR. (87)

Recalling the definition of e
𝜔

we arrive at,

||𝜔̃|| ≤ k1|| ̃E
||
|| + ||e

𝜔
|| ≤ (k1 + 1)LR (88)

where 𝜔̃ = 𝜔 − 𝜔.
Then we consider the boundedness of 𝜏 = 𝜏d − 𝜏. From the control law, we have,

||𝜏r − 𝜏|| = ||M𝜔̇r −M ̇

𝜔 + 𝜂2(𝜔r) − 𝜂2(𝜔)||

≤ ||M||k1||
̇
̃E
||
|| + L3k1|| ̃E

||
||

≤ ||M||k1||𝜔̃|| + L3k1|| ̃E
||
||. (89)

From (79) it follows that 𝜏d − 𝜏r = −k2e
𝜔

, so combining (87) and (88) we have

||𝜏|| = ||𝜏d − 𝜏r + 𝜏r − 𝜏||

≤ ||𝜏d − 𝜏r|| + ||𝜏r − 𝜏||

≤ ||M||k1||𝜔̃|| + L3k1|| ̃E
||
|| + k2||e𝜔||

≤ (||M||k1(k1 + 1) + L3k1 + k2)LR. (90)

This completes the proof. ▪

Remark 7. Proposition 3 gives the robust invariant set of the feedback controlled system in this application example.
Similar to Theorem 1, From Proposition 3 we can also prove the ISS of the overall closed loop system w.r.t. the
disturbances.

4.3 Tube-based MPC for rotational motion of rigid bodies

From the invariant set ̃ΩeR , we can define the invariant set of ̃R = RR
T

as ̃ΩR = { ̃R ∶ || (
̃R− ̃RT )∨

2
|| ≤ LR}. Because RRT

0 ∈ 

and RR
T
∈ ̃ΩR implies RRT

0 ∈  ⊘

̃ΩR, we can derive the admissible set of RRT
0 as  ⊘

̃ΩR in the nominal MPC.
It is noted that ̄E|| is not RRT

0 itself. As in the nominal MPC, the constraints on the configuration will be expressed
with ̄E||, we need to further derive the admissible set of ̄E|| from the admissible set of RRT

0 .
Suppose ( ̄E||)∨ = (a1, a2, a3)T , the relationship between RRT

0 and ̄E|| is expressed by,

RRT
0 = fR( ̄E||) =

⎡
⎢
⎢
⎢
⎣

r11( ̄E||) r12( ̄E||) r13( ̄E||)
r21( ̄E||) r22( ̄E||) r23( ̄E||)
r31( ̄E||) r32( ̄E||) r33( ̄E||)

⎤
⎥
⎥
⎥
⎦

(91)
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where

r11 =
(a2

2 + a2
3)
√

1 − ||( ̄E||)∨||2 + a2
1

||( ̄E||)∨||2

r12 = −a3 −
a1 a2

(√
1 − ||( ̄E||)∨||2 − 1

)

||( ̄E||)∨||2

r13 = a2 −
a1 a3

(√
1 − ||( ̄E||)∨||2 − 1

)

||( ̄E||)∨||2

r21 = a3 −
a1 a2

(√
1 − ||( ̄E||)∨||2 − 1

)

||( ̄E||)∨||2

r22 =
(a2

1 + a2
3)
√

1 − ||( ̄E||)∨||2 + a2
2

||( ̄E||)∨||2

r23 = −a1 −
a2 a3

(√
1 − ||( ̄E||)∨||2 − 1

)

||( ̄E||)∨||2

r31 = −a2 −
a1 a3

(√
1 − ||( ̄E||)∨||2 − 1

)

||( ̄E||)∨||2

r32 = a1 −
a2 a3

(√
1 − ||( ̄E||)∨||2 − 1

)

||( ̄E||)∨||2

r33 =
(a2

1 + a2
2)
√

1 − ||( ̄E||)∨||2 + a2
3

||( ̄E||)∨||2

From (91) the admissible set of ̄E|| in the nominal MPC can then be obtained. For example, if the constraint on R
is expressed by a function C(⋅) ∶ SO(3) ∋ R → C(R) ∈ R as C(RRT

0 ) ≤ 0, then we can write the admissible set of ̄E|| as


||
= { ̄E|| ∶ C(fR( ̄E||)) ≤ 0}, which is used to define the configuration constraint in the nominal MPC.
Combining the previous results, we are now in the position to express the nominal MPC for the rotational motion of

the rigid body as,

min
𝛿

𝜏

(s)
J(𝜁, 𝛿

𝜏
) = 𝜙r(𝜁(tk + 𝛤 )) +

∫

tk+𝛤

tk

(

Nr(𝜁 (s), 𝛿𝜏
(s))
)

ds

s.t. ̇
̄E
||
(s) = R0 ̂ēR−1

0 ,

̇ē = M−1(Mē × 𝜔0 +M𝜔0 × ē) +M−1
𝛿
𝜏

( ̄E||, ē) ∈ 
||
× e, 𝛿𝜏

∈ ̄Ue (92)

where 𝜁 = ( ̄E||, ē) is the nominal state,  =  ⊘

̃ΩR and  e = e ⊖ ̃Ω
𝜔

are the admissible configuration and velocity set,

and ̄Ue = Ue ⊖ ̃Ω
𝜏

is the admissible input set.
We then synthesize the tube-based MPC as shown in Algorithm 1. As indicated by Proposition 3, Algorithm 1 com-

bines the nominal MPC which is used to generate the nominal state/input trajectory, and the feedback controller which let
the tracking error fall in the tube. The constraints on the state/input for rotational motion of rigid bodies in the presence
of uncertainties can therefore be guaranteed to be fulfilled.
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3306 SHI et al.

Algorithm 1. Synthesis of the proposed tube-based MPC for the constrained attitude control

Initialization: At time instant t0, let ̄

𝜁(0) = 𝜁(0).
1: At time instant tk, solve the nominal MPC problem (92), obtain the nominal state and input ̄E∥(s), ē(s), ̄𝛿

𝜏
(s), s ∈

[tk, tk + 𝛤 ).
2: Calculate ̄R(s), 𝜔̄, 𝜏, s ∈ [tk, tk + 𝛤 ).
3: for s ∈ [tk, tk+1) do
4: Apply the actual control input 𝜏(s) to the rigid body, according to (79).
5: end for
6:
(
𝜁(tk), ̄𝜁(tk)

)
←
(
𝜁(tk+1), ̄𝜁(tk+1)

)
, tk ← tk+1.

7: Go to step 1.

0 2 4 6 8 10
–50

0

50

(°
)

ref

act

nom

0 2 4 6 8 10
–50

0

50

(°
)

0 2 4 6 8 10
Time(s)

0

10

20

(°
)

F I G U R E 3 The nominal and actual attitude expressed in Euler angles. The dot-dashed line represents the reference value. The solid
line represents the actual value. While the virtual line represents the nominal value

4.4 Simulation

During the simulation, the inertia tensor of the rigid body is M = diag(2.263, 2.47, 4.7235)kg ⋅m2, the initial attitude of

a rigid body is set to R(0) = exp(v̂1) with v1 = 0.65
[√

2
2
,

√
2

2
, 0
]T

, and the reference attitude is set to R0 = exp(v̂2) with

v2 = −0.6
[√

2
2
,

√
2

2
, 0
]T

. The angular velocity of the rigid body is under the constraint ||𝜔|| < 1rad/s. While the attitude

constraint of the rigid body is given by 0.65 ≤ eT
3 RRT

0 R0e3 ≤ 0.95. The disturbance acting on the rigid body is assumed to
uniform distribution dr ∼ U(−1.75, 1.75). The Lipchitz constants are calculated according to the EOM as L2 = 1.39 and
L3 = 3.34. The open-source ACADO is adopted to solve the MPC problem.49 In the simulation, the prediction horizon is
set to 0.7 s, and the sampling time is 0.1 s.

From Proposition 3, the tube along the nominal attitude trajectory is calculated as {eR ∶ ||eR|| ≤ 0.1563}, from which
the constraint for RRT

0 is revised as 0.7608 ≤ eT
3 RRT

0 R0e3 ≤ 0.8895. And the admissible set for ̄E|| is further revised as
{ ̄E|| ∶ 0.7608 ≤ eT

3 fR( ̄E||)R0e3 ≤ 0.8895} in the nominal MPC.
The simulation results are shown in Figures 3–6. The attitude of the rigid body expressed in Euler angles is shown in

Figure 3. It is seen that the attitude of the system evolves from the initial attitude to the reference attitude. The attitude
constraint of the rigid body is expressed in Figure 5, from which it is seen that the attitude constraint is satisfied using the
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F I G U R E 4 The reference and actual angular velocity
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F I G U R E 5 The attitude constraints in one test trial

proposed control algorithm, in the presence of uncertainties. It is also noted that because of the attitude constraint, the
rotational trajectory from the initial attitude to the desired attitude does not follow the geodesics on SO(3). The angular
velocity of the rigid body is depicted in Figure 4. It is seen that the constraints on the angular velocity are also fulfilled.
While the input torque under the proposed control algorithm is presented in Figure 6. These two figures also show that
the velocity and the input torque all fall in the admissible sets. From the simulation results, the feasibility of the proposed
methodology on attitude control of the rigid body is verified.

As a comparison, the base-line normal MPC is tested in the application system also Reference 38. The results
under the normal MPC are shown in Figures 7–9. It is seen that the actual attitude and angular velocity can also be
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F I G U R E 6 The actual and nominal input of the rigid body in one test trial
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F I G U R E 7 The actual attitude evolution in normal MPC

stabilized to the desired attitude and angular velocity under the normal MPC. However, as seen from Figure 9, the atti-
tude constraints are violated due to the unmodeling disturbance in the actual system. As a comparison, our proposed
approach is able to fulfill the constraints by tightening the nominal constraints in the nominal MPC. This simulation
case demonstrates the advantage of the proposed algorithm over the normal MPC in the presence of the unmodeling
disturbances.
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F I G U R E 8 The actual angular velocity of the rigid body in one test trial under normal MPC
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F I G U R E 9 The actual attitude constraints of the rigid body in one test trial under normal MPC

5 CONCLUSIONS

In this paper, we have developed a methodology to design a controller that deals with the state and input constraints for
systems on matrix Lie groups with uncertainties. The methodology is inspired by the tube-based MPC. By embedding the
manifold into Euclidean space, the nominal MPC has been designed on the Euclidean space. As the generated nominal
trajectory is restricted on the Lie group, the feedback controller used to track the nominal trajectory has been designed
on the manifold directly. We have shown that the tracking error in the feedback controller can be bounded into robust
invariant sets, which can be used to revise the constraints in the nominal MPC expressed in the Euclidean space. In this
way, the nominal MPC in the Euclidean space and the feedback controller on the Lie group can be combined together. The
proof for the ISS of the overall system evolving on the manifold considering the constraints has been obtained accordingly.
It has been proved that the proposed framework can ensure the constraints of systems on Lie groups to be fulfilled in the
presence of uncertainties. The application example of the proposed methodology on the rotational motion of the rigid
body has been presented. The proposed methodology does not rely on any local coordinates of the Lie group and can
apply the existing MPC techniques on the Euclidean space.
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