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a b s t r a c t 

Multiple aerial vehicles have the potential to transport payload in any direction and with 

any orientation in Special Euclidean Group. In this article, the control problem of the mul- 

tiple aerial vehicle transportation system with uncertainties and state/input constraints is 

considered. The multiple aerial vehicles connect with the load via spherical pairs that co- 

incide with the center of mass of the aerial vehicles. A hierarchical control scheme of such 

challenging complex systems is proposed. The outer loop is designed by a tube-based 

model predictive control in order to deal with uncertainties, state constraints and input 

boundedness, while the inner loop is designed by robust control technique which forces 

the attitude tracking error of the aircraft into robust invariant set. The attitude tracking er- 

ror of the inner loop induces a difference between the commanded and the actual equiv- 

alent wrench acting on the load. Such difference is treated as the equivalent disturbance 

of the outer loop to guarantee the fulfillment of the state and input constraints. The hier- 

archical control structure simplifies the design procedure, while still preserves the conver- 

gence and feasibility of the overall controlled system under uncertainties, which are proved 

strictly in the paper. Numerical simulations on a six-quadrotor transportation system are 

conducted to demonstrate the performance of the proposed control scheme. A real-world 

prototype including three quadrotors is developed. The hardware-in-the-loop simulation 

on the prototype supports the real-time feasibility of the proposed scheme. 

© 2022 Elsevier Inc. All rights reserved. 

 

1. Introduction 

1.1. Motivation and background 

Small scale under-actuated aerial vehicles, such as quadrotors, have become ideal platforms for many applications [1] . 

Such vehicles are usually actuated by three torques and the total thrust. Interest in aerial manipulators based on under- 

actuated aerial vehicles continues to grow [2–5] . However, the payload of a single aerial vehicle for civil applications (e.g.,

take-off weight less than 25kg) is hard to increase also due to regulatory constraints. Moreover, the under-actuation property 
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makes the task space of the single vehicle-based aerial manipulation unable to achieve six independent Degree of Freedom 

(DOF). Due to the above facts, an effective manipulation capability based only on a single under-actuated aerial vehicle is 

limited [6] . Some researchers are trying to handle manipulation by using fully actuated vehicles [7] , although such vehicles

are less efficient. 

Besides the fully actuated aerial vehicle, the manipulation based on multiple aerial vehicles has aroused great interests in 

recent years [8–10] . The multiple aerial vehicle transportation system (MAVTS), which aims at solving the 6-DOF transporta- 

tion problem, is a type of multiple aerial vehicle-based manipulators. Theoretically speaking, by using the multiple aerial 

vehicle to provide multiple thrust, the load’s attitude and position can be adjusted separately. Moreover, the load capacity 

can also be increased by adding additional aerial vehicles. However, as indicated by previous researchers, this is a complex 

system [9] . The needed controller is therefore usually endowed with a hierarchical structure, where the most inner loop is

the attitude control of a single aerial vehicle. It is thus natural that the attitude tracking error of an aerial vehicle influences

the stability and the performance of the entire collaborative system. An aerial vehicle suffers more uncertainties compared 

to a ground vehicle-based transportation system. Therefore, disturbance and uncertainty need to be explicitly considered in 

the control design. Moreover, the thrusts provided by aerial vehicles constitute complex combinations, which let the input 

force and the input torque be coupled with each other. The input constraint is therefore not easy to deal with online in the

controller. 

1.2. Related research 

The guidance, navigation and control of autonomous vehicles is a hot topic in recent years, e.g., the autonomous vehi- 

cle collision avoidance considering multiple constraint modeling [11,12] , robust control [13] , the multi-objective trajectory 

planning [14] , and the formation control of multi-UAVs [15] . Among the various methodologies, the tube-based model pre-

dictive control (MPC) has proved to be a useful technique which can deal with dynamics with uncertainties and input /

state constraints [16–18] . The basic idea of the tube-based MPC can be summarized in two steps. First, the nominal state

and input trajectory are generated based on the nominal dynamics. Second, a feedback control is designed. Because of the 

uncertainties in the system, the feedback control should be designed considering the uncertainties in such a way that the 

tracking error with respect to the nominal trajectory is kept in an invariant set. The MPC employed to generate the nom-

inal trajectory should consider the previous invariant set. By using such a technique, the state and input constraints of 

the actual system can be incorporated. Yue et.al. adopted the tube-based MPC method to design the posture controller for 

tractor-trailer vehicle [19] . Gao et.al. applied tube-based MPC to the obstacle avoidance of ground vehicles [20] , where the

tube-based MPC has been designed based on the linearized dynamics of the bicycle model. Sun et.al. designed tube-based 

MPC for the simplified unicycle model, while proved the convergence and feasibility of the closed loop system [21] , where

the invariant set of the tracking error is proved by solving the 1st order kinematics equation of the unicycle model. Nikou

et. al. proposed a control technique for the multi-agent systems by tube-based MPC [22] , and designed the force control for

underwater robots [23] , in which the invariant set is estimated from the Lipchitz continuity of the differential equation. 

The MAVTS has emerged for several years. Lee et. al. proved that a load can be transported by at least three quadrotors

in SE(3) via cables [8] . Some other configurations of MAVTS have also been proposed. Via et. al. proposed a configuration

composed of three aerial vehicles and three rigid links which provide connections to the load [24] . The ideas come from

parallel mechanism. More specially, the attaching point between the aerial vehicle and the load is modeled as a spherical 

joint, and the attaching point coincides with the Center of Mass (COM) of the aerial vehicle. In this simplified configuration,

the dynamics of the load is decoupled from the attitude dynamics of the aerial vehicle which provides the thrust. 

The control of the multiple aerial vehicle can be divided into two categories: the centralized control and the distributed 

control. The former treats the entire system as an entirety, but it needs the full state information of the load and vehicles.

While the latter is run in the distributed aerial vehicles, and does not reply on the information from the load and other

vehicles. Cardona et. al. proposed position generation and tracking scheme for multiple quadrotor transportation system [25] . 

Pereira et. al. proposed a control framework for slung load transportation with two aerial vehicles [26] . Because the load is

modeled as a mass point, the entire system is therefore decoupled into three subsystems, based on which the corresponding 

control is designed. Siegwart et.al. proposed a distributed control approach for the MAVTS [27] , where the vehicles are

grouped into leader and followers. The trajectory of the leader is generated offline, while the wrench acting on the aerial

vehicle due to the load is provided by an estimator. From the estimated wrench information, the admittance control is 

used to generate the trajectory of the followers. The distributed control approach does not need communication among 

vehicles. However as shown in previous works, the distributed control approach is vulnerable to disturbance and its stability 

is difficult to be proved. 

Santos et.al. proposed a controller combing tube-based MPC and nonlinear control for the load transportation with one 

aerial vehicle [28] . This tube-based MPC is designed based on the linearized dynamics of the load, but the feasibility analysis

has not been provided. 

How to estimate the robust invariant set relating to the feedback-controlled system is an important problem for the 

tube-based MPC. The method includes Lipchitz constant-based method [29] , summers of square-based method [30–32] , 

solutions of the differential equations [21] , and reachable set-based method [20] . Fatima proposed an attractive ellipsoid 

control method for the aggressive motion control of quadrotor [33] . It has been noted that computation of a robust invariant

set usually needs iterations and is particularly difficult for non-linear systems. However, in this paper we are inspired from 
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the fact that for a Lipchitz continuous system, the robust invariant set can be estimated conservatively from the Lipchitz 

constant. 

In addition, unlike ground-based vehicles, the subspace of the configuration space of aerial vehicles includes SO(3), which 

is not an Euclidean space. Therefore, the configuration space of aerial vehicles is not Euclidean space. By constructing the 

local mapping between SO (3) and the Euclidean space, the local coordinate of SO (3) is obtained. Traditional methods to

control the aerial vehicle are based on the equation of motion expressed by local coordinates. However, as SO (3) is not

global homeomorphic to Euclidean space [34] , the traditional methods may suffer from various problems such as singularity 

and local stability. Some control schemes are investigated to avoid such problems. Mayhew and Yu et. al. proposed several 

hybrid control schemes for systems on non-Euclidean manifold [1,34] . Chang et. al. proposed an interesting controller for 

dynamics evolving on manifolds by embedding the manifold into the Euclidean space [35] . Also, Lee et. al. proposed a

continuous tracking error expressed on SO (3) and proposed an almost global controller for systems on SO (3) based on the

error function [36] . However, the design and analysis of the MPC of MAVTS considering its non-Euclidean configuration 

space are not well studied in the previous research. 

1.3. Contributions 

In this paper, we propose a control approach for MAVTS. Each aerial vehicle in the system is an under-actuated aerial

vehicle. Therefore, the attitude of the vehicle is fully controllable, while the thrust of each aerial vehicle is considered as

the input. We consider the control problem of transporting the load from one configuration to another one. This problem is

challenging due to the following factors. 

• The MAVTS is a high-order system with complex dynamics. The attitude tracking error of each aerial vehicle always 

exists. 
• The attitude and thrust of each vehicle in the MAVTS are bounded. Besides, the unknown disturbance of the aerial vehicle

is more noticeable than that of the ground vehicle. Therefore, for the MAVTS dynamics, there are state constraints and 

uncertainties. 
• The configuration space of the MAVTS is a non-Euclidean space. 

In order to solve the above challenging problems, a hierarchical control approach will be considered. The outer loop of 

the scheme, which controls the motion of the load, is inspired by the tube-based MPC, as it can deal with the multiple

constraints. While the inner loop is a robust attitude control of the aircraft. We prove that by selecting appropriate robust

control technique, the attitude tracking error of the aircraft can be bounded in a region containing origin in the presence

of uncertainties. We also analyze the feasibility and convergence of the outer loop tube-based MPC taking into account 

the attitude tracking of the inner loop. The attitude error is expressed directly from the rotation matrix, leading to almost

global stability and continuity of the attitude control. To the best knowledge of the authors, there is no similar work on the

tube-based MPC for the entire MAVTS considering the input and state constraints in the presence of uncertainties. 

In summary, the novelty of the proposed methodology is listed as follows. 

• We propose the novel hierarchical controller structure for the entire multiple aerial vehicle transportation system con- 

sidering the attitude tracking of each aerial vehicle. 
• By carefully combining the tube-based MPC and the robust control, the state and the input constraints of the entire 

system are guaranteed in the presence of uncertainties. 
• The proposed control scheme is singularity free and globally effective because the attitude is not represented by any 

local coordinates. 
• The convergence and feasibility of the entire complex system are analyzed mathematically. 

This paper is organized as follows. The modeling of the MAVTS and the problem formulation is presented in Section 2 .

The overall control structure is designed in Section 3 , where the robust inner-loop control and the feedback outer-loop con-

trol are designed and analyzed. In Section 4 , both the convergence and feasibility of the entire controlled system are demon-

strated. Finally, numerical simulation results and discussion on the real-world implementation are presented in Section 5 . 

2. Modeling and problem formulation 

2.1. Configuration of multiple aerial vehicle transportation system 

The MAVTS in this paper is composed of a load and multiple aerial vehicles, where the aerial vehicles provide the thrust

for lifting the load. The configuration of the entire system is shown in Fig. 1 . The multiple aerial vehicle is connected with

the load via spherical joints. In this paper, we assume that the COM of the aerial vehicle is in the center of the spherical

joints. 

Under such a configuration, each aerial vehicle can rotate about the passive spherical joint with its rotation dynamics. 

Therefore, the aerial vehicle can adjust its attitude and the thrust magnitude, i.e., the thrust vector. By adjusting the thrust

vector coordinately, the attitude and position of the load can be adjusted simultaneously. For a system with n aerial vehi-

cles, it is seen that the DOF of the entire system is 6 + n , as the translational motion of each vehicle is dependent on the
653 
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Fig. 1. The configuration of the multiple aerial vehicle transportation system. The COM of each aerial vehicle coincides with the center of the spherical 

joint. The thrust of each aerial vehicle points along the negative direction of R i e 3 . 

Fig. 2. An example structure of a multiple aerial vehicle transportation system prototype containing three aerial vehicles. There is no cable to connect the 

payload and spherical hinge in the system. Each vehicle connects with the payload with a spherical joint. Each vehicle can provide a thrust vector. 

Fig. 3. The rotational range of a spherical joint. 

 

 

 

 

translational motion of the load, while the rotational motion of each vehicle is independent from the load. Also, it has been

proved in the previous paper that if n ≥ 3 and the vehicles are not in a line, then the load is six-DOF fully actuated [8,9] . 

It is noted that the attitude and the thrust magnitude of all the aerial vehicles are all bounded, because the range of the

spherical joint is bounded as seen in Fig. 3 . Besides, for the real vehicle there is inevitably offset between the COM of the

aerial vehicle and the center of the spherical joint. And for the aerial vehicle, the external disturbance always exists. As seen

later in this section, such factors will be regarded as disturbances in the modeling. 
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Table 1 

Notations in the system modeling. 

Notations Definition 

V 0 ∈ R 6 velocity of COM of the entire system 

v 0 ∈ R 3 linear velocity of COM of the entire system 

ω 0 ∈ R 3 angular velocity of COM of the entire system 

M ∈ R 6 ×6 , C ∈ R 6 ×6 , G ∈ R 6 the mass matrix, Coriolis matrix and the gravity matrix 

a ∈ R 3 vector 

R 0 ∈ SO (3) the rotation matrix representing the attitude of the load 

d 0 ∈ R 6 the uncertainties in the load dynamics 

m i ∈ R the mass of i th vehicle 

m 0 ∈ R the mass of the load 

M 0 ∈ R 3 ×3 the inertia tensor of the load 

g ∈ R the acceleration due to gravity 

w i ∈ R 3 the position of i th vehicle in { F l } 
w c ∈ R 3 the position of COM of the complete system in { F l } 
b 0 ,r ∈ R , b 0 ,t ∈ R the upper bound of disturbance on load 

p 0 ∈ R 3 the position of the COM of the entire system 

R i ∈ SO (3) , ω i ∈ R 3 the attitude and the angular velocity of i th vehicle 

τi ∈ R 3 the input torque for i th vehicle 

d i,t ∈ R 3 the translational uncertainties for i th vehicle 

d i,r ∈ R 3 the rotational uncertainties for i th vehicle 

b a ∈ R the upper bound of each vehicle 

ϒi ∈ R 3 the thrust vector provided by i th vehicle 

B the allocation matrix 

x the state vector of the entire system 

T i ∈ R the thrust magnitude of vehicle- i 

M i ∈ R 3 ×3 the inertia tensor of vehicle- i 

ω i ∈ R 3 the angular velocity of vehicle- i 

v i ∈ R 3 the linear velocity of vehicle- i 

N i ∈ R 3 the constraint force in joint- i 

ζ = (p 0 ,e , R 0 ,e , V 0 ) the state relating to error of load 

y = (p 0 , R 0 , V 0 ) the state relating to load 

Fig. 4. The constraint force exerted on each aerial vehicle (left) and the load (right). N i is expressed in world frame { E} . 

 

 

 

 

 

 

 

 

 

 

2.2. Modeling of multiple aerial vehicle transportation system 

For a system containing n aerial vehicles, we can define a world frame { E} , the load body-fixed frame { F c } whose origin

locates at the COM of the entire system, and the load’s body-fixed frame { F l } whose origin locates at the COM of the load.

We also consider body-fixed frames { O i } , i = 1 , 2 , · · · , n to each aerial vehicle. It is seen that the two frames { F l } and { F c }
are parallel. And as the COM of each aerial vehicle coincides with the spherical joint center, the distance between the two

frames { F l } and { F c } keeps constant. The offset between the COM of each aerial vehicle and the spherical joint center is

treated as modeling uncertainties. The notations in the modeling are listed in Table 1 . 

Each aerial vehicle is an under-actuated aerial vehicle, which means each vehicle is actuated by the 3-D torque τi ∈ R 

3 

and 1-D thrust T i ∈ R . The direction of T i is fixed in the body frame of the aerial vehicle, and points to the negative direction

of R i e 3 , where R i ∈ SO (3) expresses the attitude of vehicle- i , and e 3 = (0 , 0 , 1) T . Therefore, the thrust vector provided by i th

vehicle expressed in the load frame is written by, 

ϒi = R 

T 
0 R i e 3 T i , (1) 

where R 0 ∈ SO (3) expresses the attitude of load. 

The spherical joint connecting the aerial vehicle and the load induces the constraint force. As the vehicle can rotate 

freely around the spherical joint, it is assumed that only the constraint force exists and there is no constraint torque. The

constraint force is denoted by N i ∈ R 

3 expressed in { E} . As seen in Fig. 4 , the constraint forces exerted on the load and that

exerted on the aerial vehicle are reacting forces. 

Besides, in modeling the system, there is disturbance acting on each aerial vehicle and the load. The disturbance is 

induced by the offset between the center of the spherical joint and the COM of each vehicle, the friction force of the
655 
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spherical joints, the parameter errors, the wind disturbance, etc. It is reasonable to assume that the disturbance d i for

vehicle- i is bounded. 

For vehicle- i , with i = 1 , 2 , · · · , n , it suffers from the gravity force, the constraint force, the input thrust and torque, and

the disturbances. By applying Newton-Euler’s law, the dynamics of each vehicle can be written as, 

˙ v i = − 1 

m i 

ˆ ω i v i + gR 

T 
i e 3 + 

1 

m i 

R 

T 
i N i −

1 

m i 

R 

T 
i R 0 ϒi + d i,t (2a) 

˙ ω i = M 

−1 
i 

(− ˆ ω i M i ω i + τi ) + d i,r (2b) 

where m i represents the mass of i th vehicle, M i ∈ R 

3 ×3 is the inertia tensor of i th vehicle, v i ∈ R 

3 is the linear velocity of

i th vehicle expressed in frame { O i } , ω i ∈ R 

3 is the angular velocity of i th vehicle expressed in frame { O i } , τi ∈ R 

3 represents

the bounded input toque for i th vehicle, d i,t ∈ R 

3 and d i,r ∈ R 

3 represent the bounded disturbance for i th vehicle induced

by the uncertainties and external disturbances, g is the acceleration due to gravity, and the hat map ˆ a for a vector a =
(a 1 , a 2 , a 3 ) 

T ∈ R 

3 is defined by 

ˆ a = 

[ 

0 −a 3 a 2 
a 3 0 −a 1 

−a 2 a 1 0 

] 

(3) 

Similarly, the dynamics of the load can be expressed as, 

˙ v 0 = ge 3 − 1 

m 0 

�n 
i −1 N i + d 0 ,t (4a) 

˙ ω 0 = −M 

−1 
0 ˆ ω 0 M 0 ω 0 − M 

−1 
0 �n 

i =1 ˆ w i R 

T 
0 N i + d 0 ,r (4b) 

where v 0 ∈ R 

3 is the linear velocity expressed in frame { E} , ω 0 ∈ R 

3 is the angular velocity expressed in frame { F l } , m 0 

represents the mass of the load, M 0 represents the inertia tensor of the load, expressed in { F l } , w i ∈ R 

3 is the position of i th

vehicle in { F l } , d 0 ,t ∈ R 

3 and d 0 ,r ∈ R 

3 represent the bounded disturbance. 

Because of the connection of the spherical joints, the position of the vehicles and load at the connecting point should be

the same, which can be written as the following equation, 

p i = p l + R 0 w i , i = 1 , 2 , · · · , n (5) 

where p i ∈ R 

3 is the origin of frame { O i } expressed in the world frame { E} , p l ∈ R 

3 is the origin of frame { F l } expressed in

the world frame { E} . 
Inserting (2a) into (4a) and (4b) , then applying (5) and the time derivative of (5) , the constraint force N i can be eliminated

in (4a) and (4b) . Equation (4a) and (4b) can thus be simplified into the following format [9] , 

M ̇

 V 0 + CV 0 + G = 

[
R 0 0 

0 I 

]
u 0 + d 0 (6) 

where V 0 := (v 0 , ω 0 ) ∈ R 

6 represents the velocity of the COM of the entire system, M ∈ R 

6 ×6 , C ∈ R 

6 ×6 , G ∈ R 

6 are the mass

matrix, Coriolis matrix, and the gravity matrix respectively, u 0 ∈ R 

6 is the equivalent wrench acting on the load expressed

in { F c } , I is the identity matrix, and d 0 ∈ R 

6 represents the bounded uncertainties. 

The expression of the mass matrix, Coriolis matrix, and the gravity matrix is written as follows: 

M = 

[
m t 0 

0 M t 

]
, C = 

[
0 0 

0 −(M t ω 0 ) 
ˆ 

]
, 

G = 

[
m t ge 3 

0 

] (7) 

with 

m t = 

n ∑ 

i =0 

m i , M t = M 0 −
n ∑ 

i =1 

m i ˆ w i ( ̂  w i − ˆ w c ) (8) 

where w c ∈ R 

3 is the position of COM of the complete system in { F l } . 
We express the boundedness of d 0 = (d T 0 ,t , d 

T 
0 ,r ) 

T by 

‖ d 0 ,t ‖ ≤ b 0 ,t , ‖ d 0 ,r ‖ ≤ b 0 ,r (9) 

where b 0 ,t and b 0 ,r are positive constants. 

It is seen that EOM (6) is the dynamics expressed by the COM of the entire system. As we assume the center of each

aerial vehicle coincides with the joint center, the inertia matrix in (6) is constant, such EOM is actually similar to that of a

rigid body with disturbances. As seen later in the controller design, this property will simplify the design procedure. 
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The kinematics of the load is governed by the following equation 

˙ p 0 = v 0 , ˙ R 0 = R 0 ̂  ω 0 (10) 

where p 0 ∈ R 

3 represents the position of the COM of the entire system. 

As introduced earlier, the rotational motion of each aerial vehicle is independent from the motion of the load. To fully

describe the motion of the entire system, the equation of the rotational motion of each aerial vehicle is needed. For i th

vehicle, the rotational motion is governed by the following equation, 

˙ R i = R i ̂  ω i , ˙ ω i = M 

−1 
i 

(τi − ˆ ω i M i ω i ) + d i,r (11) 

And the boundedness of d i,r is expressed by 

‖ d i,r ‖ ≤ b a (12) 

where b a is a positive constant. 

The equivalent input wrench in (6) is expressed as, 

u 0 = 

[
I I · · · I 
ˆ l 1 ˆ l 2 · · · ˆ l n 

]⎡ 

⎢ ⎣ 

ϒ1 

ϒ2 

· · ·
ϒn 

⎤ 

⎥ ⎦ 

:= B ϒ (13) 

where l i = w i − w c with i = 1 , 2 , · · · , n . 

Equations (6), (10) and (11) constitute the equation of motion (EOM) of the entire system of the MAVTS. The state of

such a system can be defined as x := (p 0 , R 0 , V 0 , R i , ω i ) ∈ SE(3) × R 

6 × SO (3) × R 

3 · · · × SO (3) × R 

3 . The state relating to the

load is defined as y = (p 0 , R 0 , V 0 ) ∈ SE(3) × R 

6 . 

Assumption 1. The aircraft can rotate around the spherical joint. The home attitude of the aircraft is R T 
0 

R i = I, and the

feasible relative attitude of the aircraft is expressed as 

U j = { R i : e 
T 
3 R 

T 
0 R i e 3 ≥ L c } (14) 

where L c < 1 is a positive constant which defines the range of the spherical joint. The thrust magnitude of each aircraft

satisfies T i < T m 

, where T m 

> 0 is a positive constant. 

2.3. Problem formulation 

In this paper we will consider the control problem of the MAVTS subjecting to state constraints and input boundedness. 

While for this system, we are more concerned with how the load can be transported to the desired configuration. The

control problem can therefore be expressed as follows. 

Problem 1. Consider the MAVTS governed by the EOM (6), (10) and (11) . Suppose the state and input of the sys-

tem are subject to Assumption 1 , specific configuration constraints (p 0 , R 0 ) ∈ X , and specific velocity constraints V 0 ∈ V .

Given desired load configuration p 0 ,d and R 0 ,d , deign control input (τi , T i ) : t �→ (τi , T i ) which forces ‖ p 0 − p 0 ,d ‖ ≤ c 1 and

‖ exp 

−1 (R T 
0 ,d 

R 0 ) ‖ ≤ c 2 as t → ∞ with small positive constant c 1 and c 2 , while fulfilling all the above constraints for all dis-

turbance satisfying (9) and (12) . 

Remark 1. The desired position and velocity in Problem 1 is the position and velocity of the COM of the entire system.

During transportation, usually we are more concerned with the position and velocity of the load’s COM. However, as the 

center of the spherical joint coincides with the COM of the aerial vehicles, the COM of the entire system keeps constant in

{ F l } . Hence the desired position / velocity of the load’s COM can be easily transformed into the desired state y d . 

From Assumption 1 , the admissible thrust set provided by each aerial vehicle expressed in { F c } can be written as U T =
{ ϒi ∈ R 

3 : ‖ ϒi ‖ ≤ T m 

, 
ϒT 

i ‖ ϒ‖ e 3 ≤ −L c } . And one can define the feasible set of the equivalent wrench u 0 as, 

S τ = { τ ∈ R 

3 : τ = 

∑ ˆ l i R 

T 
0 R i T i e 3 , R i ∈ U j , 0 < T i < T m 

} 
S F = { F ∈ R 

3 : F = 

∑ 

R 

T 
0 R i T i e 3 , R i ∈ U j , 0 < T i < T m 

} (15) 

However, it is seen that S τ and S F are dependent from each other. In order to explore the feasibility of the system, it is

therefore necessary to construct an admissible set U w 

. It is defined that for all u 0 ∈ U w 

, the solution thrust ϒ always exists.

We have the following lemma. 

Lemma 1. Consider the MAVTS, the wrench acting on the load generated by the multiple thrust is expressed by (13) . There

exist positive constants τm 

, F m,h and F m,z , such that for all u 0 = (F 0 , τ0 ) ∈ { τ0 = (τ0 ,x , τ0 ,y , τ0 ,z ) 
T ∈ R 

3 : ‖ τ0 ‖ ≤ τm 

} × { F 0 =
(F 0 ,x , F 0 ,y , F 0 ,z ) 

T ∈ R 

3 : F 2 
0 ,x 

+ F 2 
0 ,y 

≤ F 2 
m,h 

, | F 0 ,z + m t g| ≤ F m,z } , the solution ϒi ∈ U T of the equation Bϒ = u 0 exists. 

Proof. From the configuration of the system, it is seen that τ0 ,z is only affected by ϒT 
i 

e 1 and ϒT 
i 

e 2 , where e 1 = (1 , 0 , 0) T 

and e 2 = (0 , 1 , 0) T . Similarly, it is seen that τ0 ,x and τ0 ,y are only decided by ϒT 
i 

e 3 . This means that the feasible set of
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(F 0 ,x , F 0 ,y , τ0 ,z ) 
T is independent from the feasible set of (τ0 ,x , τ0 ,y , F 0 ,z ) 

T . Therefore, from U j the independent admissible set of

(F 0 ,x , F 0 ,y , τ0 ,z ) and (τ0 ,x , τ0 ,y , F 0 ,z ) can be obtained. Let S 1 and S 2 denote the feasible set of (F 0 ,x , F 0 ,y , τ0 ,z ) and (τ0 ,x , τ0 ,y , F 0 ,z )

respectively. In this context, we can construct two maximum cylinders inside S 1 and S 2 respectively, S 3 = { (F 0 ,x , F 0 ,y , τ0 ,z ) ∈
S 1 : F 

2 
0 ,x 

+ F 2 
0 ,y 

≤ r 1 , ‖ τ0 ,z ‖ ≤ r 2 } , S 4 = { (τ0 ,x , τ0 ,y , F 0 ,z ) ∈ S 2 : τ
2 
0 ,x 

+ τ 2 
0 ,y 

≤ r 3 , | F 0 ,z + m t g| ≤ r 4 } where r 1 , r 2 , r 3 , and r 4 are posi-

tive constants. It is seen that S 3 and S 4 are also independent and feasible. Then the following independent feasible force and

torque set can be constructed, 

S 5 = { F 0 : F 2 0 ,x + F 2 0 ,y ≤ r 1 , | F 0 ,z + m t g| ≤ r 4 } , 
S 6 = { τ0 : τ 2 

0 ,x + τ 2 
0 ,y ≤ r 3 , | τ0 ,z | ≤ r 2 } , (16) 

We define F m,h = 

√ 

r 1 , F m,z = r 4 , τm 

= min (r 2 , 
√ 

r 3 ) , and define S 7 = { τ0 : ‖ τ0 ‖ ≤ τm 

} , which is the maximum sphere inside

S 6 . Finally, the feasible wrench set can be expressed as, 

U w 

= S 5 × S 7 (17) 

As S 5 and S 7 are independent from each other, for all u 0 ∈ U w 

, the solution ϒ to the equation Bϒ = u 0 exists. This completes

the proof. �

Lemma 2. [37] The following inequality holds for any ε > 0 and for any η ∈ R , 

0 ≤ | η| − η tanh 

(
η

ε

)
≤ k t ε (18) 

where k t is a constant satisfying k t = e −(k t +1) , i.e., k t = 0 . 2785 . 

3. Overall controller structure 

3.1. Nominal tracking error dynamics 

Given the desired configuration of the load, we can define the tracking error dynamics of the system. Letting p 0 ,d and

R 0 ,d represent the desired constant position and rotation matrix of the load, respectively, and letting the desired velocity be 

zeros, we can express the configuration error of the system as, 

p 0 ,e = p 0 − p 0 ,d , R 0 ,e = R 

T 
0 R 0 ,d (19) 

The dynamics of the multiple thrust vector load system can thus be rewritten with the above variables as, 

˙ p 0 ,e = v 0 
˙ R 0 ,e = R 

T 
0 ,e ̂  ω 0 

˙ v 0 = ge 3 + 

1 
m t 

R 0 F 0 + d 0 ,t 
˙ ω 0 = M 

−1 
t (τ0 − ω 0 × M t ω 0 ) + d 0 ,r 

(20) 

In this paper, the tube-based MPC for the MAVTS will be designed. The nominal dynamics is the basis of the tube-based

MPC design. In order to finish the design procedure, first we write the nominal dynamics of the system by eliminating the

disturbance from (20) , 

˙ p̄ 0 ,e = v̄ 0 
˙ R̄ 0 ,e = R̄ 

T 
0 ,e 

ˆ ω̄ 0 

˙ v̄ 0 = ge 3 + 

1 
m t 

R̄ 0 ̄F 0 
˙ ω̄ 0 = M 

−1 
t ( ̄τ0 − ω̄ 0 × M t ω̄ 0 ) 

(21) 

The computational complexity of MPC makes it not suitable to run in high frequency, which is needed for the attitude

control of aerial vehicles. In order to reduce the computation burden, the control of the aerial vehicle is designed using

adaptive control technique. As the dynamics of each aerial vehicle is decoupled from the dynamics of the load, the attitude

control of the aerial vehicle is the inner loop in the entire controller. It is natural that the outer loop tube-based MPC is

possible to guarantee the state constraints and input boundedness under the uncertainties, if the attitude tracking error of 

the aerial vehicle is bounded. The entire control system is shown in Fig. 5 . 

3.2. Robust attitude control of aerial vehicles 

In order to solve the formulated problem, each aerial vehicle should be able to track the attitude commands in the

presence of input boundedness and external disturbances. It is noted that the input boundedness can also be treated as 

disturbance if it is appropriately modeled. In this paper, we divide the attitude control of each aerial vehicle into two loops,

the outer loop is designed for the attitude kinematics, while the inner loop is designed for the attitude dynamics. 

Let the desired closed outer loop of the attitude controller be 

˙ e R,i = −k i, 1 e R,i (22) 
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Fig. 5. The overall control block. 

 

 

 

 

 

 

 

 

where k i, 1 is a positive constant, and e R,i = 

1 
2 (R T 

i 
R i,d − R T 

i,d 
R i ) 

∨ is the attitude error between the commanded attitude and

actual attitude of i th vehicle, so(3) ∈ a �→ a ∨ ∈ R 

3 is the vee map which is the inverse of the hat map. 

Therefore, the outer loop of the attitude control is designed as, 

ω̄ i = ( ̄R 

T 
i 

˙ R̄ i ) 
∨ − k i, 1 e R,i (23) 

The desired closed inner loop of the attitude controller is 

˙ ˜ ω i = −k i, 2 ̃  ω i (24) 

where k i, 2 is a positive gain, and ˜ ω i = ω i − ω̄ i . 

Considering the external disturbances, the controller for the inner loop of the attitude controller is thus designed as, 

τi = M i 

(
˙ ω̄ i − k i, 2 ̃  ω i − b ∗a tanh 

(
˜ ω i 

ε

))
+ ˆ ω i M i ω i (25) 

where the adaptive term b ∗a is estimated by the following adaptive law, 

˙ b ∗a = 

1 

κ1 

˜ ω i tanh 

(
˜ ω i 

ε1 

)
− γ1 b 

∗
a (26) 

where κ1 and γ1 are positive gains, and ε1 is a small constant. 

Proposition 1. Consider the aerial vehicle system whose rotational motion is governed by (11) , and the control law is given by

(25) . Suppose the attitude error of the aircraft satisfies 1 
2 tr (I − R T 

d 
R ) < 2 . If the control gains in the controller are appropriately

selected, then the closed loop tracking error (e R,i , ˜ ω i ) , and the disturbance estimation error ˜ b a = b a − b ∗a converge to a small

region containing origin in finite time. 

Proof. See Appendix A in supplementary document. �

3.3. Equivalent disturbance induced by the attitude tracking error of aircraft 

Lemma 3. Consider the MAVTS (6) , (10) and (11) . The equivalent wrench to the load is given by (13) . The attitude control of

the under-actuated vehicle is given by (25) . Then the difference between the actual equivalent input u 0 = (F 0 , τ0 ) and the desired

equivalent input u 0 ,d = (F 0 ,d , τ0 ,d ) is bounded. 

Proof. From Proposition 1 , it has been shown that the attitude tracking error of the aerial vehicles is bounded in a region

containing origin. We can express the boundedness as ‖ R i − R̄ i ‖ ≤ �R , where �R is a positive constant. Then it can be

concluded that the difference between the commanded thrust vector and actual thrust vector provided by each aerial vehicle 

satisfies, 

‖ ϒi − ϒ̄i ‖ = ‖ R 

T 
0 R i T i e 3 − R 

T 
0 R̄ i T i e 3 ‖ ≤ T i ‖ R i − R̄ i ‖ ≤ T m 

�R (27) 
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From (13) , it is seen that the difference between the desired force and actual force acting on the load satisfies, 

‖ F 0 − F 0 ,d ‖ = 

∥∥∑ 

i (ϒi − ϒ̄i ) 
∥∥ ≤ ∑ ‖ ϒi − ϒ̄i ‖ 

≤ ∑ 

T m 

�R := L F 
(28) 

Similarly, the difference between the actual and the desired equivalent moment acting on the load is bounded as, 

‖ τ0 − τ0 ,d ‖ = 

∥∥∥∑ ˆ l i (ϒi − ϒ̄i ) 

∥∥∥ ≤ ∑ ‖ ̂

 l i (ϒi − ϒ̄i ) ‖ ≤∑ ‖ l i ‖‖ ϒi − ϒ̄i ‖ := L τ

(29) 

�

From Lemma 3 , we can actually treat the difference between the desired thrust and the actual thrust induced by the

attitude tracking error as disturbance. The EOM of the entire system expressed in error can thus be written as, 

˙ p 0 ,e = v 0 
˙ R 0 ,e = R 

T 
0 ,e ̂  ω 0 

˙ v 0 = ge 3 + 

1 
m t 

R 0 F 0 ,d + d t 
˙ ω 0 = M 

−1 
t (τ0 ,d − ω 0 × M t ω 0 ) + d r 

(30) 

where d t = d 0 ,t + d a,t , d r = d 0 ,r + d a,r , d a,t and d a,r are the disturbance induced by the attitude tracking error of the aircrafts.

The disturbance d t and d r can thus be bounded as, 

‖ d r ‖ ≤ b 0 ,r + L τ := b r , ‖ d t ‖ ≤ b 0 ,t + L F := b t (31) 

3.4. Feedback control of the load dynamics 

For the nominal load dynamics, suppose there exists a nominal state trajectory ζ̄ (t) = ( ̄p 0 ,e , R̄ 0 ,e , ̄v 0 , ω̄ 0 ) and correspond-

ing nominal input trajectory ū 0 (t) , one step for the tube-based MPC is to design a feedback control law to force the tra-

jectory of the load track the nominal trajectory, and the tracking error should be kept in a robust invariant set, which is

defined as the tube of the tracking error. For this purpose, we will design the feedback control law for the load attitude and

position tracking, respectively. 

A cascaded structure controller will be considered for the load attitude control purpose. First, we design the following 

reference angular velocity for the feedback attitude control, 

ω 0 ,r = ω̄ 0 − k 1 e ˜ R , 0 (32) 

where e ˜ R , 0 = 

1 
2 ( ̄R 

T 
e, 0 R e, 0 − R T e, 0 R̄ e, 0 ) 

∨ is the attitude error between R̄ e, 0 and R e, 0 , and k 1 is a positive constant. 

Then design the body torque as, 

τ0 ,d = τ0 ,r − k 2 e ω, 0 (33) 

where e ω, 0 = ω 0 − ω 0 ,r , τ0 ,r = M t ˙ ω 0 ,r + ˆ ω 0 ,r M t ω 0 ,r , and k 2 is a positive constant. 

From the load translational EOM, the feedback position control law for the load is designed as, 

F 0 ,d = F̄ 0 − k 3 ̃  p 0 ,e − k 4 ̃  v 0 (34) 

where k 3 and k 4 are positive constants, ˜ p 0 ,e = p 0 ,e − p̄ 0 ,e and 

˜ v 0 = v 0 − v̄ 0 are the corresponding position and velocity track- 

ing error of the load. 

Let us consider the tracking error of the angular velocity of the load, substituting (32) into (30) we have, 

˙ e ω, 0 = M 

−1 
t τ0 − M 

−1 
t ˆ ω 0 M t ω 0 − M 

−1 
t τ0 ,r + M 

−1 
t ˆ ω 0 ,r M t ω 0 ,r 

= M 

−1 
t (τ0 − τ0 ,r ) + M 

−1 
t ˆ ω 0 ,r M t ω 0 ,r − M 

−1 
t ˆ ω 0 M t ω 0 

(35) 

Define a function η1 (ω) : { ω ∈ R 

3 : ‖ ω‖ ≤ ω m 

} � ω �→ M 

−1 
t ˆ ω M t ω ∈ R 

3 with positive constant ω m 

, then we have, 

‖ η1 (ω 0 ) − η1 (ω 0 ,r ) ‖ ≤ L 1 ‖ e ω, 0 ‖ (36) 

where L 1 is the Lipchitz constant of the function η1 (ω) . 

Similarly, substituting the control law (34) into the EOM of load (30) yields, 

˙ ˜ v 0 = 

˙ v 0 − ˙ v̄ 0 = 

1 
m t 

R 0 F 0 ,d − 1 
m t 

R̄ 0 ̄F 0 ,d + d t 

= 

1 
m t 

R 0 F 0 ,d − 1 
m t 

R̄ 0 F 0 ,d + 

1 
m t 

R̄ 0 F 0 ,d − 1 
m t 

R̄ 0 ̄F 0 + d t 

= 

1 
m t 

R 0 F 0 ,d − 1 
m t 

R̄ 0 F 0 ,d + 

1 
m t 

R̄ 0 (−k 3 ̃  p e, 0 − k 4 ̃  v 0 ) + d t 

(37) 

Moreover, we have 

‖ 

1 

m 

R 0 F 0 ,d −
1 

m 

R̄ 0 F 0 ,d ‖ ≤ 1 

m 

‖ F 0 ,d ‖‖ R 0 − R̄ 0 ‖ ≤ L 2 ‖ e ˜ R , 0 ‖ (38) 

t t t 
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where L 2 is a positive constant because of the boundedness of F 0 ,d . 

In order to derive the results, we further define η2 (ω) : { ω ∈ R 

3 : ‖ ω‖ ≤ ω m 

} � ω �→ ˆ ω M t ω ∈ R 

3 , hence we have 

‖ η2 (ω 0 ,r ) − η2 ( ̄ω 0 ) ‖ ≤ L 3 ‖ ω 0 ,r − ω̄ 0 ‖ ≤ L 3 k 1 ‖ e ˜ R , 0 ‖ (39) 

where L 3 is the Lipchitz constant of η2 (·) . 
Besides e ˜ R 0 

, ˜ p 0 ,e and 

˜ v 0 , we define the angular velocity tracking error, and the error between the nominal input and

actual input as, 

˜ ω 0 = ω 0 − ω̄ 0 , ˜ τ0 = τ0 ,d − τ̄0 , ˜ F 0 = F 0 ,d − F̄ 0 (40) 

Then we have the following proposition. 

Proposition 2. Consider the load dynamics (30) . The nominal state and input trajectory is represented by ζ̄ (t) and ū 0 (t) . Suppose

the equivalent wrench of the load is determined by the feedback control law (33) and (34) . The eigen-angle of the nominal rotation

matrix of the load is represented by θ (t) . The attitude control is determined by (23) and (25) . If the positive constants k 1 , k 2 , k 3 
and k 4 satisfy 

k 1 − 1 
4 ρ1 

> 0 , 

k 2 λ(M t ) −1 − ρ1 − 1 
4 ρ2 

− L 1 > 0 , 

( 1 
m t 

cos θk 4 − k 3 
k 4 

− L 2 
4 ρ1 

− 1 
4 ρ2 

) > 0 

then the state tracking error and the input of the closed loop system fall into the following sets, 

e ˜ R , 0 ∈ 

˜ �R = { e ˜ R , 0 : ‖ e ˜ R , 0 ‖ ≤
√ 

ρ2 

min (β1 ,β2 ) 
b r := L R } 

˜ ω 0 ∈ 

˜ �ω = { ̃  ω 0 : ‖ ̃  ω 0 ‖ ≤ (k 1 + 1) 
√ 

ρ2 

min (β1 ,β2 ) 
b r } 

˜ p 0 ,e ∈ 

˜ �p = 

{
˜ p 0 ,e : ‖ ̃

 p 0 ,e ‖ ≤ k 4 
k 3 

√ 

L 2 ρ3 L 
2 
R 
+ ρ4 b 

2 
t 

min (k 5 ,β3 ) 

}
˜ v 0 ∈ 

˜ �v = 

{
˜ v 0 : ‖ ̃

 v 0 ‖ ≤ 2 

√ 

L 2 ρ3 L 
2 
R 
+ ρ4 b 

2 
t 

min (k 5 ,β3 ) 

}
˜ τ0 ∈ 

˜ �τ = { ̃  τ0 : ‖ ̃  τ0 ‖ ≤ (‖ M‖ k 1 (k 1 + 1) + L 3 k 1 + k 2 ) 

b r 

√ 

ρ2 

min (β1 ,β2 ) 
:= �τ

} 

˜ F 0 ∈ 

˜ �F = 

{
˜ F 0 : ‖ ̃

 F 0 ‖ ≤ k 4 

√ 

L 2 ρ3 L 
2 
R 
+ ρ4 b 

2 
t 

min (k 5 ,β3 ) 
:= �F 

}

(41) 

where k 5 = 

k 3 
k 4 

, L R = 

√ 

ρ2 
min (β1 ,β2 ) 

b r , β1 = k 1 − 1 
4 ρ1 

, β2 = k 2 λ(M t ) 
−1 − ρ1 − 1 

4 ρ2 
− L 1 , β3 = ( 1 

m t 
cos θk 4 − k 5 − L 2 

4 ρ1 
− 1 

4 ρ2 
) with

positive constants ρ1 , ρ2 , ρ3 and ρ4 , and λ(M t ) is the minimum eigenvalue of M t . 

Proof. See Appendix B in supplementary document. �

4. Main results 

4.1. Outer loop tube-based MPC 

Based on the nominal dynamics, nonlinear MPC (NMPC) is adopted to generate the nominal state and nominal input 

for (21) by considering the state and input constraints. The NMPC is typically solved at discrete time instants. Given the

sampling time interval δt , the sampling time sequence { t k } , k ∈ N can be generated. At a sampling time instant t k , the NMPC

is constructed by solving the following optimal control problem, 

min ū 0 (s ) J( ̄ζ , ū 0 ) = V r ( ̄ζr (t k + Γ )) + V t ( ̄ζt (t k + Γ ))+ ∫ t k + Γ
t k 

(
N r ( ̄ζr (s ) , τ̄0 (s )) + N t ( ̄ζt (s ) , F̄ 0 (s )) 

)
ds 

s.t. ˙ ζ̄ (s ) = f ( ̄ζ , ū 0 (s )) , 

ζ̄ ∈ X̄ × V̄ , ū 0 (s ) ∈ Ū , ζ̄ (t k + Γ ) ∈ �r × �t 

(42) 

where Γ > δt is the prediction horizon, ζr = (R 0 ,e , ω 0 ) denotes the states of rotational motion, ζt = (p 0 ,e , v 0 ) is used to

express the states of translational motion, V r ( ̄ζr ) V t ( ̄ζt ) , N r ( ̄ζr , τ̄0 ) and N t ( ̄ζt , F̄ 0 ) are positive definite functions that will be

defined later, �r and �t are the terminal set that will be defined later, the admissible nominal wrench set Ū is defined as
¯
 = (S 5 � ˜ �F ) × (S 7 � ˜ �τ ) , X̄ and V̄ are defined as, 

X̄ = X � ( ̃  �R × ˜ �p ) , V̄ = V � ( ̃  �ω × ˜ �v ) , (43) 
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and f ( ̄ζ , ū 0 ) is given by (21) . Taking S̄ 5 = S 5 � ˜ �F and S̄ 7 = S 7 � ˜ �τ , Ū can thus be expressed from Lemma 1 and

Proposition 2 as, 

Ū = S̄ 5 × S̄ 7 (44) 

where S̄ 5 = { ( ̄F 0 ,x , F̄ 0 ,y , F̄ 0 ,z ) T : F̄ 2 
0 ,x 

+ F̄ 2 
0 ,y 

≤ (F m,h − �F ) 
2 := F̄ 2 

m,h 
, �F − F m,z ≤ F̄ 0 ,z + m t g ≤ F m,z − �F } , S̄ 7 = { τ0 : ‖ τ0 ‖ ≤

τm 

− �τ := τ̄m 

} . 
By solving (42) , the nominal state trajectory ζ̄ (s | t k ) and the nominal control trajectory ū 0 (s | t k ) are therefore obtained.

Given ζ̄ (s | t k ) and ū 0 (s | t k ) , the equivalent wrench commands applied on the load u 0 ,d (s | t k ) can then be obtained from the

feedback control law (33) and (34) . 

From the desired thrust vector of the aerial vehicle, there are several ways to transform the thrust vector into the attitude

and thrust magnitude of the vehicle. The thrust magnitude of the aerial vehicle can be obtained directly from the norm of

the thrust vector as, 

T i = ‖ ϒi ‖ (45) 

Given the yaw angle reference trajectory ψ̄ (t) , the reference attitude trajectory can be calculated as, 

R̄ i e 3 = − 1 
T i 

R 0 ϒi 

R̄ i e 2 = ( cos ( ψ̄ (t)) , sin ( ψ̄ ) , 0) × R̄ i e 3 
R̄ i e 1 = R̄ i e 2 × R̄ i e 3 

(46) 

4.2. Terminal control of the nominal dynamics 

In order to prove the feasibility and convergence of the nominal closed loop system with nominal MPC, we will first

consider the terminal control for the nominal dynamics on the time interval [ t k + Γ, t k +1 + Γ ] . The terminal control will be

designed and analyzed in two steps. In first step, the terminal control of rotational part of the nominal load dynamics will

be considered. Then, the terminal control of the translational part of the nominal load dynamics will be considered. 

4.2.1. Terminal control for rotational motion 

For the nominal rotational motion of the load, design the commanded angular velocity as, 

ω̄ 0 ,d = −k 6 ̄e R, 0 (47) 

where k 6 is a positive constant, and ē R, 0 = 

1 
2 ( ̄R 0 ,e − R̄ T 

0 ,e 
) ∨ . 

From (47) we further design the terminal control low for τ̄0 as, 

τ̄0 = −k 7 M t ω̄ 0 ,e + ω̄ 0 × M t ω̄ 0 + M t 
˙ ω̄ 0 ,d (48) 

where k 7 is a positive constant, and ω̄ 0 ,e = ( ̄ω 0 − ω̄ 0 ,d ) . 

Substituting (48) into the nominal EOM (21) yields, 

˙ ω̄ 0 ,e = −k 7 ̄ω 0 ,e (49) 

Taking ζ̄r = ( ̄e T 
R, 0 

, ω̄ 

T 
0 
) T and ξ̄r = ( ̄e T 

R, 0 
, ω̄ 

T 
0 ,e 

) T , it is concluded that 

ξ̄r = 

[
I 0 

k 6 I I 

]
ζ̄r := A r ζ̄r (50) 

Then we have the following proposition which is necessary for the feasibility and convergence analysis of the entire 

system. 

Proposition 3. Consider the nominal rotational EOM of the load, define a set �r = { ̄ζr : V r ( ̄ζr ) = 

1 
2 tr(I − R̄ 0 ,e ) + 

1 
2 h 11 ‖ ̄ω 0 +

k 6 ̄e R, 0 ‖ 2 ≤ εr := 

τ̄2 
m 

max 

(
L 9 
2 

, 
2 L 8 
h 11 

) } , where h 11 is a positive constant. If ζ̄r (t k + Γ ) ∈ �r , the control law τ̄0 (s ) , s ∈ (t k + Γ, t k +1 + Γ )]

is given by (47) and (48) , where the parameters are appropriately selected, then the following propositions hold for all s ∈
(t k + Γ, t k +1 + Γ )] , 

1) �r is an invariant set, 

2) ˙ V r + N r ( ̄ζr , τ̄0 ) ≤ 0 , where 

N r = ζ̄ T 
r A 

T 
r 

[
q 11 I 0 

0 q 12 I 

]
A r ζ̄r + τ̄ T 

0 r 1 ̄τ0 

:= ζ̄ T 
r Q r ζ̄r + τ̄ T 

0 R r ̄τ0 

with positive constants q 11 , q 12 and r 1 . 

3) τ̄0 ∈ S̄ 7 for all ζ̄r ∈ �r . 
Proof. See Appendix C in the supplementary document. �
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4.2.2. Terminal control for translational motion 

For the nominal translational motion of the load, we design the commanded velocity as, 

v̄ 0 ,d = −k 8 ̄p 0 ,e (51) 

where k 8 is a positive constant. 

From (51) we further design the feedback control low for F̄ 0 as, 

F̄ 0 = −k 9 m t R̄ 

T 
0 ̄v 0 ,e − R̄ 

T 
0 m t ge 3 + R̄ 

T 
0 m t ̇

 v̄ 0 ,d (52) 

where k 9 is a positive constant, and v̄ 0 ,e = v̄ 0 − v̄ 0 ,d . 
For the translational motion of the load, we express ζ̄t = ( ̄p T 

0 ,e 
, ̄v T 

0 
) T and ξ̄t = ( ̄p T 

0 ,e 
, ̄v T 

0 ,e 
) T . Then it is concluded that 

ξ̄t = 

[
I 0 

k 8 I I 

]
ζ̄t := A t ζ̄t (53) 

We have the following proposition which is necessary for the feasibility and convergence analysis. 

Proposition 4. Consider the nominal translational EOM of the load, the nominal attitude of the load satisfies e T 
3 

R̄ 0 e 3 ≥ L l , where

L l < 1 is a positive constant. Define a set �t = { ̄ζt : V t ( ̄ζt ) := 

1 
2 ζ̄

T 
t H t ζ̄t ≤ ε2 

t } , where H t is a positive definite matrix defined from

H t = A 

T 
t 

[
h 21 I 0 

0 h 22 I 

]
A t 

with positive constants h 21 and h 22 , and 

εt = min 

⎛ 

⎝ 

F m,z − �F √ 

2 m t ( 
k 8 + k 9 √ 

h 21 

+ 

k 2 
8 √ 

h 22 

) 
, 

F̄ m,h − m t g 
√ 

1 − L 2 
l √ 

2 m t ( 
k 8 + k 9 √ 

h 11 

+ 

k 2 
8 √ 

h 22 

) 

⎞ 

⎠ 

If ζ̄t (t k + Γ ) ∈ �t , the control law F̄ 0 (s ) , s ∈ (t k + Γ, t k +1 + Γ )] is given by (51) and (52) , where the parameters are appropriately

selected, then the following propositions hold for all s ∈ (t k + Γ, t k +1 + Γ )] , 

1) �t is an invariant set, 

2) ˙ V t + N t ≤ 0 , where 

N t = ζ̄ T 
t A 

T 
t 

[
q 21 I 0 

0 q 22 I 

]
A t ζ̄t + 

( ̄F 0 + m t R̄ 

T 
0 ge 3 ) 

T r 2 ( ̄F 0 + m t R̄ 

T 
0 ge 3 ) 

with positive constants q 21 , q 22 and r 2 . 

3) F̄ 0 ∈ S̄ 5 for all ζ̄t ∈ �t . 

Proof. See Appendix D in supplementary document. �

4.3. Feasibility and stability of the overall system 

Theorem 1. Consider the MAVTS (6) . The nominal state ζ̄ and nominal wrench ū 0 is solved from the nominal finite time optimal

problem (42) . The feedback control law for the equivalent wrench u 0 ,d is determined by (33) and (34) . The attitude control of

each aerial vehicle is determined by (25) . Suppose that at initial time instant the finite time optimal problem is feasible. Then the

closed loop system is input-to-state stable (ISS) with respect to the disturbances. 

Proof. See Appendix E in supplementary document. �

4.4. Algorithm synthesis 

From the results of Theorem 1 , the algorithm of implementing the tube-based MPC for the entire system is shown in

Algorithm 1 . We can therefore conclude that such an algorithm can force the system to achieve ISS with respect to the

disturbance. While the tracking error of the actual system is always kept in an invariant set along the nominal trajectory,

and the input to each aircraft always falls into the admissible input sets. Problem 1 is thus solved. 

Remark 2. From Theorem 1 , the obtained commanded equivalent wrench u 0 ,d always falls in the admissible set Ū . This

means that the allocation solution R̄ i and T i from u 0 ,d always satisfies the constraints. For brevity, the detailed allocation 
procedure is omitted in this article. 
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Algorithm 1 Synthesis of the algorithm. 

Initialization: At time instant t 0 , let ζ (0) = ζ̄ (0) . 

1: At time instant t k , solve the nominal MPC problem, obtain the nominal equivalent wrench input ū 0 (s ) , s ∈ [ t k , t k + Γ ) . 

2: for all s ∈ [ t k , t k +1 ) do 

3: Using (33) and (34), obtain the commanded equivalent wrench u 0 ,d (s ) . 

4: Compute the commanded attitude R̄ i (s ) and thrust T i (s ) of each aerial vehicle from u 0 ,d (s ) . 

5: Using (25), obtain the commanded torque τi (s ) of each aerial vehicle. 

6: Apply the actual control input τi (s ) and T i (s ) to each aerial vehicle. 

7: end for 

8: 
(
ζ (t k ) , ζ̄ (t k ) 

)
← 

(
ζ (t k +1 ) , ζ̄ (t k +1 ) 

)
, t k ← t k +1 . 

9: Go to step 1. 

Fig. 6. The location of the multiple aerial vehicles in the simulation. 

Table 2 

Physical parameters of the quadrotor aerial vehicle. 

Parameters Value 

Location of quadrotors in { F l } (0 . 35 , 0 , 0) m, (0 . 35 , −0 . 45 , 0) m, (−0 . 35 , −0 . 45 , 0) m (−0 . 35 , 0 , 0) m, (−0 . 35 , 0 . 45 , 0) m, (0 . 35 , 0 . 45 , 0) m 

Mass of each quadrotor 1.121 kg 

Inertia tensor of each quadrotor diag (0.01, 0.0082, 0.0148) kg · m 

2 

Thrust coefficient of propellers 1 . 2953 × 10 −5 N/ (rad/s ) 2 

Drag coefficient of propellers 1 . 0368 × 10 −7 Nm/ (rad/s ) 2 

Mass of the load 5 kg 

 

 

 

 

5. Simulation and discussion on real-world implementation 

5.1. Numerical simulation 

5.1.1. Simulation scenarios 

In the numerical simulation, 6 quadrotor vehicles are considered to provide the thrust for the transportation system. The 

location of the quadrotor in { F l } is shown in Fig. 6 , and is summarized in Table 2 . The physical parameters of each quadrotor

are selected from a real quadrotor, as seen in Table 1 in [38] , and are summarized in Table 2 in this paper. The thrust

coefficient and drag coefficient of the propellers are selected from [39] . 

In the simulation, the flapping effect and the actuator dynamics for the propellers are also considered. The modeling 

of the flapping effect is borrowed from [39] . The flapping effect of the rotors make the thrust not strictly in line with the

z-axis of the body frame. 

Besides, the actuator dynamics of the rotors is modeled as a first-order plus time delay system [40] , 

G (s ) = 

1 

1 + T a s 
e −τa s 

where T a is the time constant, and τa is the time delay. In [40] , it is seen that T a = 0 . 041 , and τa = 0 . 0015 for a 12-inch

rotor. 

The initial configuration of the load is: 

p 0 (0) = (2 + z 1 , z 2 , 10 + z 3 ) m , R 0 (0) = exp 

(
ˆ z 4 
)

exp ( 0 . 4(1 , 1 , 0) ) 
ˆ 

where z , z and z are random numbers between 0 and 1, and z ∈ S 2 is the random vector. 
1 2 3 4 
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Fig. 7. The illustration of the attitude constraint of the load in the simulation. This means that the angle between the z axis of { E} and { F l } should be in 

the range of [ cos −1 (0 . 85) , cos −1 (0 . 7)] , i.e., the z axis of { F l } should point to the red belt in this figure. 

Fig. 8. The configuration trajectory of the load. (Red: R 0 e 1 , green: R 0 e 2 , blue: R 0 e 3 .) . 

 

 

 

 

 

 

 

 

 

And the desired configuration of the load is 

p 0 ,d = (0 , 0 , 0) m , R 0 ,d = exp 

(
−0 . 6( 

1 √ 

2 

, 
1 √ 

2 

, 0) 

)̂
 

The illustration of an example of the initial and desired configuration can be seen in Fig. 8 . 

In the simulation, we also test different time constant T a with 0.021, 0.041, 0.051, 0.061 and 0.07. For each different T a , we

run 50 test trials with the following conditions, and check the test data to see if the system is stable, and if the constraints

are fulfilled. 

• The random disturbance acting on the aircraft is given by d i ∼ U(−1 , 1) . The disturbance acting on the load is given by

d 0 ,t ∼ U(−1 , 1) and d 0 ,i ∼ U(−1 , 1) . 

• An obstacle with radius of 1.5 m is set at the position of 
p 0 (0) 

2 . The MAVTS should keep away from the obstacle. It is

noted that the obstacle is on the straight way from the initial position to the desired position. 
• The constraint on the attitude of the load is set as 0 . 8 ≤ e T 3 R 0 e 3 ≤ 0 . 85 . The physical meaning of such constraint is illus-

trated in Fig. 7 . 
• The constraint on the spherical joint connecting to each quadrotor is e T 

3 
R T 

0 
R i e 3 ≥ 0 . 7 . 

• The wrench acting on the system generated by the system is projected into the admissible set S 5 = { F 0 : F 2 0 ,x + F 2 0 ,y ≤
(35 N) 2 , ‖ F 0 ,z + m t g‖ ≤ 42 N} , S 7 = { τ0 : ‖ τ0 ‖ ≤ 15 . 2 N · m } , which are calculated according to thrust-weight ratio of each

quadrotor. 
• We restrict the angular velocity of the load by adding the constraint ‖ ω 0 ‖ < 1 rad/s . 

According to the physical parameters and the equation of motion of the MAVTS, the Lipchitz constants in (36) and

(39) are calculated as L 1 = 1 . 363 and L 3 = 2 . 0936 . The constant L 2 is set to 3 considering the thrust-weight ratio of each

quadrotor. The open source ACADO is used to solve the NMPC problem in the outer loop control [41] . In solving the optimal

control problem (42) , the prediction horizon is set to 0.7 s, and the sampling time is 0.1 s. 
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Fig. 9. The tube along the nominal position. The tube is 0.3033 m calculated from Proposition 2 . The actual position keeps inside the tube. The tube should 

not interact with the obstacle so as to ensure the geometric safety. 

Fig. 10. The position evolution of the load. The virtual line represents the desired position, the solid line represents the actual position, and the dot-dash 

line represents the nominal position generated by the nominal MPC. 

 

 

 

 

 

 

 

 

 

5.1.2. Results 

In the simulation we found that if the time constant T a is greater than 0.07, the system becomes unstable. While if the

system is stable, the simulation results show that the constraints are all fulfilled. 

When T a = 0 . 041 , one set of the simulation results is shown in Figs. 8 - 16 . From Proposition 2 and the upper bound of

the disturbances, we can calculate the upper bound of the attitude tracking error and the position tracking error as ‖ e ˜ R 0 
‖ ≤

0 . 1563 and ‖ ̃  p e, 0 ‖ ≤ 0 . 3033 m . The tube along the nominal position trajectory is shown in Fig. 9 , where it is seen that the

actual position trajectory always locates inside the tube. By considering the tube along the nominal position trajectory, the 

obstacle in the nominal MPC is revised into 1.8033 m. The position of the load is depicted in Figs. 8 - 10 . It is seen that

the nominal MPC generates the nominal trajectory of the load from the initial configuration to the desired configuration, 

while keeping the position constraint satisfied. The geometric safety in terms of the obstacle avoidance is thus achieved. 

The load’s attitude evolution from initial attitude to the goal attitude is depicted in Fig. 11 , while the attitude error of the

load defined by ‖ R 0 − R̄ 0 ‖ is shown in Fig. 12 . It is seen that the attitude error is bounded in the presence of disturbance

and uncertainties. The fulfilled position and attitude constraints are shown in Figs. 13 - 14 . 

During the simulation, the attitude of each aerial vehicle is varying at all the time. This means that the direction of the

multiple thrust is also varying. As an example, the commanded attitude of the first vehicle is shown in Fig. 15 , and the

attitude tracking error of the first vehicle is shown in Fig. 16 . It is seen that the attitude tracking error of this quadrotor is

also bounded. As the equivalent wrench output from the tube-based MPC is admissible, the transformed attitude of each 
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Fig. 11. The attitude evolution of the load. 

Fig. 12. The attitude error of the load. 

Fig. 13. The position constraint expressed by the distance from the obstacle. 

 

 

 

 

quadrotor is also in the admissible set. The thrust magnitude of each quadrotor is shown in Fig. 17 , which shows that the

thrust magnitude of each quadrotor is always less that L 2 m i g, thus is in the admissible input set. 

Remark 3. As indicated in Problem 1 , we need the load to be transported from the initial pose to the desired pose, while to

fulfill the constraints in the presence of uncertainties and input boundedness. The initial configuration and the desired con- 

figuration should be in the admissible state set. Otherwise, the tube-based MPC is not feasible, then as seen from Theorem 1 ,

the system cannot be guaranteed stable. If the simulation scenarios are not in line with the conditions of Theorem 1 , e.g.,
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Fig. 14. The attitude constraint on the load. 

Fig. 15. The commanded attitude of quadrotor 1, expressed in Euler angles. 

Fig. 16. The attitude tracking error of quadrotor 1. 
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Fig. 17. The thrust magnitude of each quadrotor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the initial configuration and the desired configuration does not fall into the admissible set, then the system may not be sta-

bilized. This is why the initial configuration and the desired configuration are designed as seen in the simulation scenario. 

Besides, the feedback control parameters should be appropriately selected according to Proposition 2 to keep the system 

stable. 

Remark 4. The ISS of the system means that the magnitude of the regular perturbation does not influence stability of the

system. Propositions 3 and 4 show that the tube of the tracking error is proportional to the disturbance magnitude. The

tube is then used to revise the admissible state and input set in the nominal MPC. The larger is the magnitude of the tube,

the smaller the admissible state and input set in the nominal MPC are. By considering the tube, the safety of the system

is enhanced, but at the same time, the system response becomes conservative. Conservative estimation of the disturbance 

may make the nominal trajectory generated by the nominal MPC become conservative, e.g., too far away from the obstacle 

in the obstacle avoidance problem. 

Remark 5. In the simulation, the actuator dynamics is also considered in the system. Such actuator dynamics induces the 

singular perturbation in the system, and is not analyzed in the proof. The singular perturbation theorem may be adopted to

analyze the stability of the entire system considering actuator dynamics. In this paper, the simulation is used to demonstrate 

the effect of actuator dynamics. Under the conditions listed in the simulation, when the time constant is greater than a

threshold, the system becomes unstable. This implies that the actuator dynamics should be fast enough. This is a factor that

may affect the stability in real-world systems, and should be considered in the prototype design and implementation. 

5.2. Comparison 

As a comparison, we adopted a baseline controller for the system to transport the load from initial pose to the desired

pose. In the comparison simulation, the parameters, disturbance, and constraints of the system are all the same as in the

previous simulation case. The controller is adopted from (24)-(31) in [42] . The results with well-tuned controller gains are

shown in Figs. 18 - 20 . It is noted that the desired pose of the load is different from the initial pose of the load at the initial

instant, i.e., there is large initial error. While there are uncertainties, state and input constraints in the system. Under such

conditions, the baseline controller is also able to let the load arrive at the desired pose from the initial pose. However, it

is seen that the baseline controller is not able to deal with the state and input constraints online . Therefore, the obstacles

are not avoided by the MAVTS in this simulation case, as seen in Fig. 18 and Fig. 20 . The position trajectory interacts with

the obstacles in the comparison simulation. Moreover, there is large overshoot in the position tracking of the load in the

comparison case. This is partly induced by the fact that the baseline controller is unable to fulfill the input constraints,

it may produce control input outside of the admissible input set. While input itself is indeed bounded in the plant of

the simulation. This induces additional input disturbances. Therefore, the tracking error may become large and may make 

overshoot in the comparison simulation. Through the comparison simulation, the capability of our proposed methodology 

to fulfill the state constraints under bounded input and uncertainties is further verified. 

5.3. Hardware-in-the-loop simulation and discussion on real-world implementation 

In order to explore the real-time performance of the presented algorithm in real-world system, a middle-ware of the 

real-time MAVTS prototype is developed. We implemented the real-time hardware-in-the-loop (HIL) simulation based on 

the developed middle-ware. 
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Fig. 18. The position evolution of the load, in the comparison simulation. 

Fig. 19. The attitude evolution of the load, in the comparison simulation. 

Fig. 20. The 3D position of the load, in the comparison simulation. 
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Fig. 21. The architecture of real-time simulation system of the MAVTS in ROS. 

Fig. 22. The hardware architecture of the MAVTS prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1. Hardware-in-the-loop simulation 

In implementing the real-world system, the outer loop of the tube-based MPC is developed in C++ and Ubuntu 18.04/ROS 

software environment [43] . The ROS framework supports the multi-thread programming. Each thread of the program is 

called a ROS node [43] . Based on (6), (10) and (11) , the ROS nodes of the simulated MAVTS plant are developed. To simulate

the real-world flight, uncertain disturbance is added to the plant as in Section 5.1 . The remaining ROS nodes in the sim-

ulation act as the interfaces which receive commanded signals from the remote-control stick and convert the signals into 

the reference position and attitude. The architecture of the real-time simulation system is shown in Fig. 21 . By adopting

the ROS framework, such a real-time simulation system can be easily transplanted to the real-world system. The NMPC in 

the outer loop is also solved with the ACADO solver. Different from the simulation in MATLAB, in the hardware-in-the-loop

simulation, the ACADO with C++ interfaces is adopted. 

In the real-world system, the HIL simulation is conducted. We also carefully designed the modes and the switches of the

controller in the HIL simulation to let the system can switch among different modes such as take-off, flight and landing.

The HIL simulation results show that the developed middle-ware of the proposed control scheme on the hardware system 

can satisfy the real-time requirements, therefore is suitable for implementation. 

5.3.2. Discussion on real-world implementation 

Each aerial vehicle used in the prototype is a self-developed small-scale quadrotor drone, which also contains a complete 

set of avionics equipment. Therefore, each aerial vehicle can fly individually. The flight control of each aerial vehicle is 

constructed based on the PX4 open-source flight controller. 

To satisfy the requirements of reliability and real-time communication among multiple sub-aircraft, the CAN bus is used 

to construct the reliability, extendable, and real-time communication among multiple vehicles in the prototype. The high 

level computer and the flight control modules of each vehicle are considered as nodes mounted on the CAN bus. Unlike the

common wireless communication in aerial vehicle swarms, such a bus-based wired communication system not only satisfies 

the reliability and real-time communication, but also allows expansion of the quantity of vehicles. The architecture of the 

developed hardware system is shown in Fig. 22 . 

Based on the designed hardware system, the software of the MAVTS prototype is developed in ROS framework. The 

controller scheme Algorithm 1 run as ROS nodes are installed on the high level computer mounted on the load platform.

Meanwhile, a one-to-many communication protocol, Swarmlink , is designed for the MAVTS, with corresponding decoding 

and encoding nodes on both payload platform and sub-aircraft. The overall system software architecture is shown in Fig. 23 .

As shown in the figure, the Decision node is used to receive the remote control commands, and transmit the commands

to the position and attitude controller. The Controller node is implemented from the outer loop tube-based MPC in C++. 

The Swarmlink node encodes and publishes the communication data packets on the CAN bus according to the Swarmlink 

protocol. It also decodes the data packets received from the CAN bus and converts them into the data packets with other

format that can be subscribed by other ROS nodes on the high level computer. Based on the developed MAVTS prototype

composed of three quadrotor aerial vehicles, preliminary flight is performed. 
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Fig. 23. The software architecture based on ROS implemented in the MAVTS prototype. 

 

 

 

 

 

 

 

 

 

 

Remark 6. It is noted that to apply the complete control scheme in the real-world system, we need the information of the

upper bound of the disturbance. As seen in the proof of Theorem 1 , the upper bound of the disturbance can be used to revise

the admissible state and input set in the nominal MPC, thus ensure the safety of the system. The bounded disturbance can

be identified by comparing the experimental data from a test vehicle and the state prediction from model (6) . By measuring

and recording the actual states from the real vehicle and the nominal state predicted from the nominal model, the bounded

information can be obtained [20] . It is noted that the model mismatch and disturbance identification is not the focus of

this paper. Accurate estimation of the upper bound of the disturbance also needs plenty of real-world data. However, it is

also noted that even if the estimation is conservative and is not accurate enough, it does not influence the stability of the

system. 

6. Conclusions 

In this paper, the control problem of the multiple aerial vehicle transportation system has been considered. The 6D 

pose of the load can be adjusted separately because the multiple vehicles can provide thrust with different directions. 

As the multiple aerial vehicle transportation system is a highly complex system, a controller with a hierarchical structure 

has been designed to simplify the design procedure. Different from other work, the admissible state and input set in the

tube-based model predictive control of this paper is revised considering the attitude tracking error of the lower layer- 

controlled subsystem, therefore the safety of the higher layer system is guaranteed. To the best knowledge of the authors, 

this is the first time that the tube-based model predictive control is applied to the multiple aerial vehicle transportation

system. The mathematical proof and the simulation results have shown that the proposed control approach can efficiently 

deal with the state/input constraints and uncertainties. In addition, it is mentioned that the attitude tracking error of the 

system is expressed by rotation matrix directly, therefore the singularity problem and unwinding problem due to the local 

expression of attitude has been avoided in our work. The hardware-in-the loop simulation and the preliminary flight results 

demonstrate that the overall proposed control scheme is suitable for real-world system. 
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Appendix A. 

Appendix B. Proof of proposition 1 

Proof. Define the Lyapunov candidate for quadrotor attitude dynamics as, 

V 1 = 

1 

2 

˜ ω 

T 
i ˜ ω i + 

1 

2 

κ1 ̃
 b 2 a (A.1) 

Differentiating V 1 along the trajectory of (11) yields, 

˙ V 1 = ˜ ω 

T 
i 

˙ ˜ ω i − κ1 ̃
 b a ̇ b 

∗
a 

= ˜ ω 

T 
i 

[
−k i, 2 ̃  ω i − b ∗a tanh 

(
˜ ω i 
ε1 

)
+ d i 

]
− κ1 ̃

 b a ̇ b 
∗
a 

(A.2) 

Substituting (26) into (A.2) we have, 

˙ V 1 ≤ − ˜ ω 

T 
i k i, 2 ̃  ω i + b a ‖ ̃  ω i ‖ − ˜ ω 

T 
i b a tanh 

(
˜ ω i 

ε1 

)
+ κ1 γ1 b 

∗
a 

˜ b a (A.3) 

From Lemma 2 , we have 

b a ‖ ̃  ω i ‖ ≤ b a 

(
˜ ω 

T 
i tanh 

(
˜ ω i 

ε1 

)
+ k t ε1 

)
(A.4) 
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Combining (A.4) and (A.3) yields, 

˙ V 1 ≤ −k i, 2 ‖ ̃  ω i ‖ 

2 + b a k t ε + κ1 γ1 b 
∗
a 
˜ b a (A.5) 

Moreover, from Young’s inequality, given a positive constant δ > 

1 
2 we have, 

b ∗a ˜ b a = b a ̃  b a − ˜ b 2 a ≤
1 

2 δ
˜ b 2 a + 

δ

2 

b 2 a − ˜ b 2 a = −2 δ − 1 

2 δ
˜ b 2 a + 

δ

2 

b 2 a (A.6) 

Then (A.5) can be expressed as, 

˙ V 1 ≤ −k i, 3 ‖ ̃  ω i ‖ 

2 + k t ε1 b a − κ1 γ1 
2 δ−1 

2 δ
˜ b 2 a + 

δκ1 γ1 

2 
b 2 a 

(A.7) 

For the outer loop of the control, we consider the following Lyapunov function candidate, 

V 2 (R i ) = 

1 

2 

tr (I − R̄ 

T 
i R i ) (A.8) 

which is a function of attitude error and is valid on { R i : tr ( ̄R T i R i ) < 2 } . 
Expanding R̄ T R in (A.8) with Rodrigues’ formula, we have, 

V 2 = 

1 

2 

tr 

(
− sin (‖ a ‖ ) 

ˆ a 

‖ a ‖ 

− ˆ a 2 

‖ a ‖ 

2 
[ 1 − cos (‖ a ‖ ) ] 

)
(A.9) 

where a ∈ R 

3 . It is seen tr 

(
sin (‖ a ‖ ) ˆ a 

‖ a ‖ 
)

= 0 , tr ( ̂  a 2 ) = −2 ‖ a ‖ 2 , therefore, 

V 2 = 1 − cos (‖ a ‖ ) (A.10) 

It is natural to verity that, 

˙ V 2 = e T R,i E ω,i (A.11) 

where E ω,i = ω i − ( ̄R T 
i 

˙ R̄ i ) 
∨ . 

Finally, define the following Lyapunov function candidate for the rotational motion of each aerial vehicle as, 

V a = V 1 + V 2 (A.12) 

Combining (A.7) and (A.11) , we can obtain the derivative of V a as 

˙ V a = e T 
R,i 

(−k i, 1 e R,i + ˜ ω i ) + 

˙ V 1 (A.13) 

Applying Young’s inequality, we have, 

e T R,i ̃  ω i ≤
1 

2 

e 2 R,i + 

1 

2 

˜ ω 

2 
i (A.14) 

Substituting (A.14) and (A.7) into (A.13) , we can rewrite the expression of ˙ V a as, 

˙ V a ≤ −
(
k i, 1 − 1 

2 

)‖ e R,i ‖ 

2 −
(
k i, 2 − 1 

2 

)‖ ̃  ω i ‖ 

2 −(
κ1 γ1 

2 δ−1 
2 δ

)
˜ b 2 a + C 1 

(A.15) 

where C 1 = k t εb a + 

δκ1 γ1 
2 b 2 a . 

If we appropriately select parameters k i, 1 , k i, 2 , κ1 and γ1 , we can further express ˙ V a as, 

˙ V a ≤ −C 2 V a + C 1 (A.16) 

where C 2 is positive constant. Then we can conclude that 

e a ≤ 2 

√ 

C 1 
C 2 

, where e a ∈ {‖ e R,i ‖ , ‖ ̃  ω i ‖ , ‖ ̃ b a ‖} . This completes the proof. �

Appendix C. Proof of Proposition 2 

Proof. We define the following Lyapunov candidate for the rotational part of (30) , 

V l1 = tr (I − R̄ 

T 
0 ,e R 0 ,e ) + 

1 

2 

e T ω, 0 e ω, 0 (B.1) 

which is positive definite. 
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From (35) , we can obtain the time derivative of V l1 , 

˙ V l1 = e T ˜ R , 0 ̃
 ω 0 + e T ω, 0 ̇

 e ω, 0 

= e T ˜ R , 0 
(−k 1 e ˜ R , 0 + e ω, 0 ) − k 2 e 

T 
ω, 0 M 

−1 
t e ω, 0 + e T ω, 0 [ η1 (ω 0 ,r ) 

−η1 (ω 0 )] + e T ω, 0 d r 
≤ −k 1 ‖ e ˜ R , 0 ‖ 

2 + e T ˜ R , 0 
e ω, 0 − k 2 λ(M t ) −1 ‖ e ω, 0 ‖ 

2 + 

L 1 ‖ e ω, 0 ‖ 

2 + e T ω, 0 d r 
≤ −(k 1 − 1 

4 ρ1 
) ‖ e ˜ R , 0 ‖ 

2 − (k 2 λ(M t ) −1 − ρ1 

− 1 
4 ρ2 

− L 1 ) ‖ e ω, 0 ‖ 

2 + ρ2 b 
2 
r 

(B.2) 

Taking β1 = k 1 − 1 
4 ρ1 

and β2 = k 2 λ(M t ) 
−1 − ρ1 − 1 

4 ρ2 
− L 1 , if the parameters are selected such that β1 > 0 and β2 > 0 , then

˙ V l1 ≤ − min (β1 , β2 ) ‖ (e T ˜ R , 0 
, e T ω, 0 ) 

T ‖ 

2 + ρ2 b 
2 
r (B.3) 

It is seen that ˙ V l1 < 0 if ‖ (e T 
˜ R , 0 

, e T ω, 0 ) 
T ‖ > 

√ 

ρ2 
min (β1 ,β2 ) 

b r . The tracking error e ˜ R , 0 and e ω, 0 satisfy, 

‖ e ˜ R , 0 ‖ ≤ ‖ (e T ˜ R , 0 
, e T ω, 0 ) 

T ‖ ≤ L R 

‖ e ω, 0 ‖ ≤ ‖ (e T ˜ R , 0 
, e T ω, 0 ) 

T ‖ ≤ L R 
(B.4) 

Recalling the definition of e ω, 0 we arrive at, 

‖ ̃  ω 0 ‖ ≤ k 1 ‖ e ˜ R , 0 ‖ + ‖ e ω, 0 ‖ ≤ (k 1 + 1) L R (B.5) 

Then we consider the boundedness of ˜ τ0 = τ0 ,d − τ̄0 . From the control law we have, 

τ0 ,r − τ̄0 = M t ˙ e ω, 0 + η2 (ω 0 ,r ) − η2 (ω 0 ) (B.6) 

While from (33) it is concluded that τ0 ,d − τ0 ,r = −k 2 e ω, 0 , then we have 

‖ ̃  τ0 ‖ = ‖ − k 1 M t ˙ e ˜ R , 0 + η2 (ω 0 ,r ) − η2 (ω 0 ) − k 2 e ω, 0 ‖ 

≤ ‖ M t ‖ k 1 ‖ ̃  ω 0 ‖ + L 3 k 1 ‖ e ˜ R , 0 ‖ + k 2 ‖ e ω, 0 ‖ 

≤ (‖ M t ‖ k 1 (k 1 + 1) + L 3 k 1 + k 2 ) b r 

√ 

ρ2 

min (β1 ,β2 ) 

(B.7) 

Secondly, we consider the translational part of the (30) . For this purpose, we define two variables ν1 = k 5 ̃  p e, 0 and ν2 =
k 5 ̃  p e, 0 + ̃

 v 0 , then define the following Lyapunov candidate, 

X V l2 = 

1 

2 

νT 
1 ν1 + νT 

2 ν2 (B.8) 

Combining (37) it can be derived that ˙ ν2 = k 5 (−ν1 + ν2 ) + 

˙ ˜ v 0 ≤ k 5 (−ν1 + ν2 ) + L 2 ‖ e ˜ R , 0 ‖ + 

1 
m t 

R̄ 0 ̃  F 0 + d t . 

Notice that R̄ 0 can be expressed as R̄ 0 = exp (θ ˆ a ) , where θ ∈ [0 , π ] is the eigen-angle of R̄ 0 , and a ∈ S 2 is the eigen-axis

of R̄ 0 . Then differentiating V l2 yields, 

˙ V l2 = νT 
1 ˙ ν1 + νT 

2 ˙ ν2 

≤ −k 5 ‖ ν1 ‖ 

2 + k 5 ‖ ν2 ‖ 

2 + L 2 ‖ e ˜ R , 0 ‖‖ ν2 ‖−
1 

m t 
cos θk 4 ‖ ν2 ‖ 

2 + νT 
2 d t 

≤ −k 5 ‖ ν1 ‖ 

2 − ( 1 
m t 

cos θk 4 − k 5 − L 2 
4 ρ3 

− 1 
4 ρ4 

) ‖ ν2 ‖ 

2 

+ L 2 ρ3 ‖ e ˜ R , 0 ‖ 

2 + ρ4 b 
2 
t 

(B.9) 

We set β3 = ( 1 
m t 

cos θk 4 − k 5 − L 2 
4 ρ3 

− 1 
4 ρ4 

) and select the parameters appropriately to let β3 > 0 . Then 

˙ V l2 ≤ −k 5 ‖ ν1 ‖ 

2 − β3 ‖ ν2 ‖ 

2 + L 2 ρ3 L 
2 
R + ρ4 b 

2 
t (B.10) 

It is seen that ˙ V l2 < 0 if ‖ (ν1 , ν2 ) ‖ > 

√ 

L 2 ρ3 L 
2 
R 
+ ρ4 b 

2 
t 

min (k 5 ,β3 ) 
. Therefore we have, 

‖ ̃

 p 0 ,e ‖ ≤ 1 
k 5 

‖ ν‖ ≤ 1 
k 5 

√ 

L 2 ρ3 L 
2 
R 
+ ρ4 b 

2 
t 

min (k 5 ,β3 ) 

‖ ̃

 v 0 ‖ ≤ ‖ ν1 ‖ + ‖ ν2 ‖ ≤ 2 

√ 

L 2 ρ3 L 
2 
R 
+ ρ4 b 

2 
t 

min (k 5 ,β3 ) 

(B.11) 

From the control law (34) , we can obtain that ˜ F 0 is bounded by, 

‖ ̃

 F 0 ‖ ≤ k 4 ‖ ν2 ‖ ≤ k 4 

√ 

L 2 ρ3 L 
2 
R 

+ ρ4 b 
2 
t 

min (k 5 , β3 ) 
, (B.12) 
This completes the proof. �
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Appendix D. Proof of Proposition 3 

Proof. From the definition of V r it is seen that 

V r = 

1 

2 

tr(I − R̄ 0 ,e ) + 

1 

2 

h 11 ‖ ̄ω 0 ,e ‖ 

2 (C.1) 

Combining (47) and (49) , the derivative of V r is derived as, 

˙ V r = ē T R, 0 ̄ω 0 + h 11 ̄ω 

T 
0 ,e 

˙ ω̄ 0 ,e 

= ē T R, 0 ( ̄ω 0 ,d + ω̄ 0 ,e ) − 2 k 7 h 11 ̄ω 

T 
0 ,e ̄ω 0 ,e 

= −k 6 ‖ ̄e R, 0 ‖ 

2 + ē T R, 0 ̄ω 0 ,e − 2 k 7 h 11 ̄ω 

T 
0 ,e ̄ω 0 ,e 

≤ −k 6 ‖ ̄e R, 0 ‖ 

2 + 

1 
4 ρ5 

‖ ̄e R, 0 ‖ 

2 + ρ5 ‖ ̄ω 0 ,e ‖ 

2 − 2 k 7 h 11 ‖ ̄ω 0 ,e ‖ 

2 

(C.2) 

where ρ5 is a positive constant. Then it is concluded that ˙ V r ≤ 0 , if k 6 and k 7 satisfy k 6 > 

1 
4 ρ5 

and k 7 > 

ρ5 
2 h 11 

. 

Taking the norm of (48) yields, 

‖ ̄τ0 ‖ ≤ ‖ k 7 M t ω̄ 0 ,e ‖ + ‖ ̂

 ω̄ 0 M t ω̄ 0 ‖ + ‖ M t 
˙ ω̄ 0 ,d ‖ 

(C.3) 

For the second term of the right side of (C.3) the following inequality holds, 

‖ ̂

 ω̄ 0 M t ω̄ 0 ‖ ≤ L 3 ‖ ̄ω 0 ‖ (C.4) 

From (47) , combing the result of ‖ ̇ ē R, 0 ‖ it is seen that, 

‖ M t 
˙ ω̄ 0 ,d ‖ ≤ ‖ M t ‖ k 6 ‖ ̇

 ē R, 0 ‖ ≤ ‖ M t ‖ k 6 ‖ ̄ω 0 ‖ = L 5 ‖ ̄ω 0 ‖ (C.5)

where L 5 is positive constant. Moreover, we can express 

‖ k 7 M t ω̄ 0 ,e ‖ ≤ L 6 ‖ ̄ω 0 ,e ‖ (C.6) 

where L 6 is a positive constant. Recalling the definition of ω 0 ,e we have, 

‖ ̄ω 0 ‖ 

2 = ‖ ̄ω 0 ,e ‖ 

2 + 2 k 6 ̄ω 

T 
0 ,e ̄e 0 ,R + k 2 6 ‖ ̄e R, 0 ‖ 

2 (C.7) 

Combing (C.3), (C.4) and (C.5) , we arrive at, 

‖ ̄τ0 ‖ 

2 ≤ L 2 6 ‖ ̄ω 0 ,e ‖ 

2 + 2 L 6 L 7 ‖ ̄ω 0 ,e ‖‖ ̄ω 0 ‖ + L 2 7 ‖ ̄ω 0 ‖ 

2 

≤ L 2 6 ‖ ̄ω 0 ,e ‖ 

2 + 

L 6 L 7 
2 ρ6 

‖ ̄ω 0 ,e ‖ 

2 + 2 L 6 L 7 ρ6 ‖ ̄ω 0 ‖ 

2 + L 2 7 ‖ ̄ω 0 ‖ 

2 (C.8) 

where L 7 = L 3 + L 5 . Substituting (C.7) into (C.8) yields, 

‖ ̄τ0 ‖ 

2 ≤ (L 2 6 + 

L 6 L 7 
2 ρ6 

+ (L 2 7 + 2 L 6 L 7 ρ6 )) ‖ ̄ω 0 ,e ‖ 

2 + 

2 k 6 (2 L 6 L 7 ρ6 + L 2 7 ) ̄ω 

T 
0 ,e ̄e 0 ,R + k 2 6 (2 L 6 L 7 ρ6 + L 2 7 ) ‖ ̄e R, 0 ‖ 

2 

≤ [ L 2 6 + 

L 6 L 7 
2 ρ6 

+ (L 2 7 + 2 L 6 L 7 ρ6 )+ 

2 k 6 (2 L 6 L 7 ρ6 + L 2 7 ) 

4 ρ7 
] ‖ ̄ω 0 ,e ‖ 

2 + [
k 2 6 (2 L 6 L 7 ρ6 + L 2 7 ) + 2 ρ7 k 6 (2 L 6 L 7 ρ6 + L 2 7 ) 

]‖ ̄e R, 0 ‖ 

2 

:= L 8 ‖ ̄ω 0 ,e ‖ 

2 + L 9 ‖ ̄e R, 0 ‖ 

2 

(C.9) 

where ρ6 and ρ7 are positive constants. 

Secondly, from (C.2), (C.9) and the definition of N r , it is concluded that, 

˙ V r + N r ≤ −(k 6 − 1 
4 ρ5 

− q 11 − r 1 L 8 ) ‖ ̄e R, 0 ‖ 

2 −
(2 k 7 h 11 − ρ5 − q 12 − r 1 L 9 ) ‖ ̄ω 0 ,e ‖ 

2 
(C.10) 

Then if the parameters are appropriately selected, we arrive at ˙ V r + N r ≤ 0 . 

Thirdly, as ‖ ̄e R, 0 ‖ 2 ≤ tr (I − R̄ 0 ,e ) , we have 

‖ ̄e R, 0 ‖ 

2 ≤ 2 εr , ∀ ̄ζr ∈ �r (C.11) 

Then from (C.9) it is seen that 

‖ ̄τ0 ‖ ≤
√ 

max 

(
L 9 
2 

, 
2 L 8 
h 11 

)
εr = τ̄m 

, ∀ ̄ζr ∈ �r (C.12) 

¯ ¯
This means that τ̄0 ∈ S 7 for all ζr ∈ �r . This completes the proof. �
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Appendix E. Proof of Proposition 4 

Proof. Substituting the control law (52) into the nominal dynamics of the load (21) , and considering the definition of v 0 ,e ,
we have, 

˙ p̄ 0 ,e = v̄ 0 ,d + ̄v 0 ,e , ˙ v̄ 0 ,e = −k 9 ̄v 0 ,e (D.1) 

From the definition of V t it is seen that 

V t = 

1 

2 

h 21 ‖ ̄p 0 ,e ‖ 

2 + 

1 

2 

h 22 ‖ ̄v 0 ,e ‖ 

2 (D.2) 

Then the time derivative of V t can be derived as, 

˙ V t = h 21 ̄p 
T 
0 ,e 

˙ p̄ 0 ,e + h 22 ̄v T 0 ,e ˙ v̄ 0 ,e 
= h 21 ̄p 

T 
0 ,e ( ̄v 0 ,e + ̄v 0 ,d ) + h 22 ̄v T 0 ,e (−k 9 ̄v 0 ,e ) 

≤ −k 8 h 21 ‖ ̄p 0 ,e ‖ 

2 − k 9 h 22 ‖ ̄v 0 ,e ‖ 

2 

+ h 21 
1 

4 ρ8 
‖ ̄p 0 ,e ‖ 

2 + h 21 ρ8 ‖ ̄v 0 ,e ‖ 

2 

(D.3) 

where ρ8 is a positive constant. It is seen that if k 8 and k 9 satisfy k 8 > 

1 
4 ρ8 

and k 9 > 

h 21 
h 22 

ρ8 , then 

˙ V t ≤ 0 , which shows the

set �t is an invariant set. 

Next, from the definition of N t we have, 

˙ V t + N t ≤ −k 8 h 21 ‖ ̄p 0 ,e ‖ 

2 − k 9 h 22 ‖ ̄v 0 ,e ‖ 

2 + 

h 21 
1 

4 ρ8 
‖ ̄p 0 ,e ‖ 

2 + h 21 ρ8 ‖ ̄v 0 ,e ‖ 

2 + q 21 ‖ ̄p 0 ,e ‖ 

2 + 

q 22 ‖ ̄v 0 ‖ 

2 + r 2 m 

2 
t [(k 8 + k 9 ) 

2 ‖ ̄v 0 ,e ‖ 

2 −
2 k 2 8 (k 8 + k 9 ) ̄p 

T 
0 ,e ̄v 0 ,e + k 4 8 ‖ ̄p 0 ,e ‖ 

2 ] 

= −
(
k 8 h 21 − (h 21 − 2 k 2 8 r 2 m 

2 
t (k 8 + k 9 )) 

1 
4 ρ8 

−
q 21 − r 2 m 

2 
t k 

4 
8 

)‖ ̄p 0 ,e ‖ 

2 − ( k 9 h 22 − (h 21 −
2 k 2 8 r 2 m 

2 
t (k 8 + k 9 )) ρ8 − q 22 − r 2 m 

2 
t (k 8 + k 9 ) 

2 
)‖ ̄v 0 ,e ‖ 

2 

(D.4) 

If the parameters satisfy k 8 h 21 − (h 21 − 2 k 2 8 r 2 m 

2 
t (k 8 + k 9 )) 

1 
4 ρ8 

− q 21 − r 2 m 

2 
t k 

4 
8 > 0 and (k 9 h 22 − (h 21 − 2 k 2 8 r 2 m 

2 
t (k 8 + k 9 )) ρ8 −

q 22 − r 2 m 

2 
t (k 8 + k 9 ) 

2 ) > 0 , then it is concluded that ˙ V t + N t ≤ 0 . 

It is seen that if ζ̄t ∈ �t , the following inequality holds, 

‖ k 9 ̄v 0 ,e + k 8 ̄v 0 ,e − k 2 8 ̄p 0 ,e ‖ 

≤ k 9 ‖ ̄v 0 ,e ‖ + k 8 ‖ ̄v 0 ,e ‖ + k 2 8 ‖ ̄p 0 ,e ‖ 

≤ (k 8 + k 9 ) 

√ 

2 ε2 
t 

h 21 
+ k 2 8 

√ 

2 ε2 
t 

h 22 

(D.5) 

Furthermore, we have, 

‖ ̄R 

T 
0 (k 9 ̄v 0 ,e + k 8 ̄v 0 ,e − k 2 8 ̄p 0 ,e ) ‖ = ‖ k 9 ̄v 0 ,e + k 8 ̄v 0 ,e − k 2 8 ̄p 0 ,e ‖ (D.6) 

Combining (D.5) and (D.6) , and from the definition of εt , we have, 

m t ‖ ̄R 

T 
0 (k 9 ̄v 0 ,e + k 8 ̄v 0 ,e − k 2 8 ̄p 0 ,e ) ‖ ≤ F m,z − �F , 

m t g 
√ 

1 − L 2 
l 

+ m t ‖ ̄R 

T 
0 (k 9 ̄v 0 ,e + k 8 ̄v 0 ,e − k 2 8 ̄p 0 ,e ) ‖ ≤ F̄ m,h 

(D.7) 

Recalling (52) and (44) , we can conclude that F̄ 0 ∈ S̄ 5 . �

Appendix F. Proof of Theorem 1 

Proof. First, let us prove the feasibility of the MPC problem recursively. Assume at a sampling instant t k the solution for the

optimal control problem exists, denoted by ū ∗
0 
(s ) , s ∈ [ t k , t k + Γ ] . According to the state constraints definition, at the time

instant t k , the state ζ̄ stays in the terminal region under the control of ū ∗
0 
(t k ) . 

Then for the time interval [ t k +1 , t k +1 + Γ ] we can construct the following solution for the optimal control problem (42) ,

ū 0 , f = 

{
ū 

∗
0 (s ) , s ∈ [ t k +1 , t k + Γ ] 

ū 0 ,ter (s ) , s ∈ (t k + Γ, t k +1 + Γ ] 
(E.1) 

where ū 0 ,ter = ( ̄F 0 ,ter , τ̄0 ,ter ) is determined by (48) and (52) . According to Proposition 3 and Proposition 4 , ū 0 ,ter defined by

(48) and (52) is a terminal controller, which means that ū 0 ,ter (s ) ∈ Ū for all s ∈ (t k + Γ, t k +1 + Γ ] . Because the control is a

terminal control, it is seen that the state will be kept in terminal region at time t k +1 + Γ , which means that under the

control ū 0 ,ter , we have, 

ζ̄ (t k +1 + Γ ) ∈ �r × �t (E.2) 
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Therefore, we can conclude that ū 0 , f (s ) , s ∈ [ t k +1 , t k +1 + Γ ] is a feasible solution of (42) . The feasibility of (42) can thus be

guaranteed recursively in this way. 

Next we consider the convergence of the MPC problem. 

We define the following Lyapunov candidate of the closed loop nominal system, 

V̄ = J( ̄ζ , ū 0 ) (E.3) 

Then the difference of V̄ from the time instant t k to the time instant t k +1 is given by, 

�V = V̄ (t k +1 ) − V̄ (t k ) 

= 

∫ t k +1 + Γ
t k +1 

[
N r 

(
ζ̄r (s ) , τ̄0 (s ) 

)
+ N t 

(
ζ̄t (s ) , F̄ 0 (s ) 

)]
ds 

− ∫ t k + Γ
t k 

[
N r 

(
ζ̄r (s ) , τ̄0 (s ) 

)
+ N t 

(
ζ̄t (s ) , F̄ 0 (s ) 

)]
ds 

+ V r 

(
ζ̄r (t k +1 + Γ ) 

)
+ V t 

(
ζ̄t (t k +1 + Γ ) 

)
−

V r 

(
ζ̄r (t k + Γ ) 

)
− V t 

(
ζ̄t (t k + Γ ) 

)
= 

∫ t k +1 + Γ
t k + Γ

[
N r 

(
ζ̄r (s ) , τ̄0 (s ) 

)
+ N t 

(
ζ̄t (s ) , F̄ 0 (s ) 

)]
ds 

− ∫ t k +1 

t k 

[
N r 

(
ζ̄r (s ) , τ̄0 (s ) 

)
+ N t 

(
ζ̄t (s ) , F̄ 0 (s ) 

)]
ds 

+ V r 

(
ζ̄r (t k +1 + Γ ) 

)
+ V t 

(
ζ̄t (t k +1 + Γ ) 

)
−

V r 

(
ζ̄r (t k + Γ ) 

)
− V t 

(
ζ̄r (t k + Γ ) 

)

(E.4) 

From Proposition 3 and 4 , integrating ˙ V r + 

˙ V t + N t + N r over [ t k + Γ, t k +1 + Γ ] yields, ∫ t k +1 + Γ
t k + Γ

[
N r 

(
ζ̄r (s ) 

)
+ N t 

(
ζ̄t (s ) 

)]
ds 

+ V r 

(
ζ̄r (t k +1 + Γ ) 

)
+ V t 

(
ζ̄t (t k +1 + Γ ) 

)
−

V r 

(
ζ̄r (t k + Γ ) 

)
− V t 

(
ζ̄t (t k + Γ ) 

)
≤ 0 

(E.5) 

Substituting (E.5) into (E.4) yields, 

�V ≤ 0 (E.6) 

Therefore, it is concluded that the closed loop nominal system is asymptotically stable at origin. Then there exists a class

KL function α1 (·) such that, 

ζ̄ (t) ≤ α1 ( ̄ζ (0) , t) , ∀ t > 0 (E.7) 

From Lemma 3 it is seen that there exists a class K function α2 (·) such that, 

‖ (b r , b t ) ‖ ≤ α2 (‖ (b 0 r , b 0 t , b a ) ‖ ) , ∀ t > 0 (E.8)

Moreover, from Proposition 2 , it is seen that there exist class K functions α3 (·) and α4 (·) such that, 

‖ ̃

 ζr ‖ ≤ α3 (b r ) , ‖ ̃

 ζt ‖ ≤ α4 (‖ (b r , b t ) ‖ ) , ∀ t > 0 (E.9)

Thus there exists a class K function α5 (·) such that, 

‖ ̃

 ζ‖ ≤ α5 (‖ (b 0 r , b 0 t , b a ) ‖ ) , ∀ t > 0 (E.10) 

Then combining the result of (E.7) and (E.10) , it is seen that ∀ t > 0 , 

‖ ζ‖ ≤ ‖ ̄ζ (t) ‖ + ‖ ̃

 ζ (t) ‖ ≤ α5 (‖ (b 0 r , b 0 t , b a ) ‖ ) + α1 ( ̄ζ (0) , t) (E.11)

which shows that the entire system is ISS with respect to the disturbances. �

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.apm.2022.05.013 
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