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Abstract—This letter aims to solve the challenging problems in
multi-modal active vision for object detection on unmanned aerial
vehicles (UAVs) with a monocular camera and a limited Field of
View (FoV) LiDAR. The point cloud acquired from the low-cost
LiDAR is firstly converted into a 3-channel tensor via motion com-
pensation, accumulation, projection, and up-sampling processes.
The generated 3-channel point cloud tensor and RGB image are
fused into a 6-channel tensor using an early fusion strategy for
object detection based on a Gaussian YOLO network structure.
To solve the low computational resource problem and improve
the real-time performance, the velocity information of the UAV
is further fused with the detection results based on an extended
Kalman Filter (EKF). A perception-aware model predictive control
(MPC) is designed to achieve active vision on our UAV. According
to our performance evaluation, our pre-processing step improves
other literature methods running time by a factor of 10 while
maintaining acceptable detection performance. Furthermore, our
fusion architecture reaches 94.6 mAP on the test set, outperforming
the individual sensor networks by roughly 5%. We also described
an implementation of the overall algorithm on a UAV platform and
validated it in real-world experiments.

Index Terms—Aerial systems: applications, perception-action
coupling, sensor fusion.

I. INTRODUCTION

ACTIVE vision refers to the idea of taking perception re-
quirements into consideration in control strategies seeking

the most information content [1]. This idea has been applied in
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various fields of robotics for the purposes of object detection,
localization or flight through complex environments [2], [3],
[4] to keep the target visible while the robots are moving. In this
letter, we focus on realizing a real-time multi-modal active vision
system for object detection on a small-scale UAV platform. The
system is mainly composed of two parts: (i) multi-modal data
fusion for object detection, and (ii) a perception-aware MPC
framework to achieve active vision.

The sensor setup for object detection/tracking has to take
into account that RGB images captured by monocular cameras
contain color and texture information, but they are strongly
affected by illumination and lack of depth information. Thus,
vision-based methods [5], [6] may suffer from degraded perfor-
mance in adverse environments, such as those with complete
darkness. Conversely, point clouds acquired by a LiDAR (Light
Detection And Ranging) are produced almost independently
from the ambient illumination conditions and can provide ac-
curate 3D geometric information. The idea of combining the
strength of different sensor types makes LiDAR and camera
data fusion-based methods a promising approach [7]. In the
fields of object detection, convolutional neural networks (CNNs)
have made remarkable achievements based on RGB data [8],
[9]. As one might expect, extending CNNs to multi-modal data
has become a popular approach. Several studies [10], [11] have
demonstrated that CNNs have brilliant performance in process-
ing the LiDAR-camera fusion data.

Besides, in recent years, there has been a growing interest in
perception-aware motion planning and control of UAVs [12].
The methodology can mainly be divided into two groups: the
planning-based method, and the control-based method. The
former is useful for global navigation of UAVs in unknown
environments by combining path planning algorithms [4], [13],
[14]. While the latter is typically based on constrained control
methodology by defining the perception constraints and incor-
porating them into the control problem formulation [12], [15],
[16], [17]. MPC is a useful tool for dealing with the perception
constraints in perception-aware control [18], which can obtain
improved results by integrating perception, planning and control
into a single problem [2].

In this letter, we aim to utilize a sensor suite that combines
a monocular camera and a limited FoV LiDAR sensor. With
regards to the LiDAR sensor, solid-state LiDAR sensors have
recently garnered increasing interest due to their relatively low
cost, lightweight design, long-range scanning capabilities and
non-repetitive scan patterns that feature an increasing density
of point clouds over time [19]. These characteristics make them
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well-suited for use in UAVs, which are load and power sensitive.
Therefore, we chose to use a solid-state LiDAR in our work. In
fact, solid-state LiDAR sensors have a smaller FoV compared
to traditional versions. Practical solutions for obtaining a larger
FoV include increasing the number of LiDARs, adjusting their
setup position and orientation [20], or adding additional servo
motors to adjust the FoV of the sensors [21]. However, more
sensors or motors are also heavier and the amount of load that
UAVs can carry is limited. Here, we present a perception-aware
MPC that considers the constraints from multi-sensors to re-
alize active vision and keep the observed object in the FoV.
Besides, there are still some challenges to be addressed due to
the unique requirements of small-scale UAVs and the real-time
performance:
� Data from different sensors can vary in frequency and

processing speed. For the point cloud acquired from a non-
repetitive solid-state LiDAR, it takes time to accumulate
to form dense point clouds for further up-sampling and
detection.

� Small-scale UAVs typically have limited computing ca-
pabilities, while the processing of point clouds has high
computational complexity.

� For detection purposes, it is crucial to keep the regions of
interest (ROI) always within the limited FoV of the multi-
modal sensors. To apply active vision, e.g., the perception-
based MPC, the detection algorithm needs to output the
position of the ROI quickly enough to satisfy the real-time
requirements of control.

The purpose of this letter is to overcome the aforementioned
challenges. Here, we provide an integrated multi-modal sensor
fusion active vision algorithm for small-scale UAVs, which in-
corporates state-of-the-art methods. This algorithm will address
the real-time performance requirements and take into account
the specific constraints of small-scale UAVs. In summary, the
main contribution of this letter is listed as follows.
� We propose a novel approach to fuse the information from

solid-state LiDAR, camera, and GPS (Global Positioning
System) /IMU (Inertial Measurement Unit) on UAVs. Un-
der this framework, we can obtain the motion-compensated
dense point cloud and improve the real-time perfor-
mance of the LiDAR-camera fusion-based detection al-
gorithm by using a velocity-based extended Kalman Filter
(vEKF).

� A perception-aware MPC is designed to tackle perception
constraints from multi-sensors and to guarantee that the
ROI simultaneously falls into the FoV of multiple sensors.
The perception constraints for the 2D camera and 3D
LiDAR are derived carefully.

� To the best of the authors’ knowledge, this is the first time
that the multi-sensors (LiDAR, camera, GPS and IMU)
fusion active object detection on UAVs is investigated. The
proposed system has been validated in a series of real-world
experiments.

II. PRELIMINARIES

A. Frames and Notation Definition

The coordinate frames used in this work are depicted in
Fig. 1(a), including the IMU body frame {B} which is fixed
at the center of UAV’s mass, the world frame {W}, the LiDAR

Fig. 1. (a) Illustration of the reference frames and detection scenario. Dashed
lines represent the FoV of sensors. (b) Timing of the sensor measurements, data
synchronization strategy (blue boxes), and point clouds accumulation process.

frame {L} and the camera frame {C}. We use the sensor frame
{S} to denote both {L} and {C}.

Each coordinate axis of frame {A} is expressed as the or-
thonormal basis {xA,yA, zA}.

Given two frames {A} and {D}, the homogeneous trans-
formation matrix A

DT ∈ SE(3) representing the transformation
from frame {D} into frame {A} is defined as,

A
DT :=

[
A
DR A

Dp

0 1

]
(1)

where A
DR ∈ SO(3) is the rotation matrix and A

Dp ∈ R3 is the
translation vector.

Let the Apo = (Axo,
Ayo,

Azo)
T be the target object position

in frame {A} and AIj = {APj
i ∈ R3, i = 0, 1, . . . ,M} be the

point cloud in frame {A} at time instant j, where APj
i =

(Axi,
Ayi,

Azi)
T denotes a single point within the point cloud.

In the case of the same time instant, the time instant superscript
j will be omitted for notation simplification. Denote vA and ωA

as the linear velocity and the angular velocity of frame {A} with
respect to the world frame, expressed in frame {A}. Denote (̂·)
as the estimated value of (·). For arbitrary two vectors a ∈ R3

andb ∈ R3,Λ(a) is the skew-symmetric matrix of vectora such
that Λ(a)b = a× b.

B. System Overview

The main goal of this letter is to realize a real-time multi-
modal active vision system for object detection based on a UAV
platform equipped with a limited FoV LiDAR and camera. The
proposed system is applied to actively detect a target UAV in
real-world experiments, as shown in Fig. 1(a).

We adopt Gaussian YOLOv3 network [9], [22], a state-
of-the-art CNN-based visual object detection approach, as a
baseline detector module. The network is trained with our own
6-channel RGBXYZ dataset to efficiently detect our custom
UAVs. The preprocessing algorithm of point clouds is studied,
which includes motion compensation, accumulation, projection,
and up-sampling. A GPS/IMU fused EKF is adopted to estimate
the pose and velocity information of the detector UAV. Then,
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Fig. 2. Overall architecture of the multi-modal active vision on UAVs for
object detection.

the detector UAV’s velocity information will be further fused
with detection results by a velocity-based EKF in order to
increase the update frequency of the target UAV’s position. A
perception-aware MPC is adopted as the main tool to deal with
the perception constraints from both camera and limited FoV
LiDAR. The overall architecture of the proposed active vision
framework is shown in Fig. 2.

III. LIDAR-CAMERA-GPS/IMU FUSION ON UAVS

We consider fusing point clouds and RGB images into tensors
of 6 channels. Firstly, point clouds in several LiDAR scans will
go through motion compensation, and then it will be accumu-
lated into a dense point cloud cluster. Then the dense point
cloud cluster is converted into a 2D image (in the following
denoted as XYZ) by projection and up-sampling processes.
The resulting XYZ image is simply concatenated with an RGB
image to produce a 6-channel tensor, which is known as early
fusion. Compared to other fusion strategies like late fusion
or the cross fusion [10], early fusion has the least number of
model parameters and lower computational cost with little loss
in performance [23]. This is crucial for a real-time system.
In addition, early fusion is able to use existing methods that
were based on camera images by concatenating color intensities
with 3D information to process fused data [10]. Instead of
estimating the target position by further modifying the network,
which requires much more computation resources, we decouple
the target detection and 3D position estimation, and allow the
network to be substituted as needed.

A. Multi-Modal Data Preprocessing

1) Point Clouds Motion Compensation and Accumulation:
Point clouds are subject to motion-based distortion as the Li-
DAR mounting platform moves, making the target hard to
be identified. To address this issue, the poses of LiDAR are
used to compensate for the motion distortion. Regarding data
synchronization, we simply associate a LiDAR scan frame with
its closest pose state which has the same instant as IMU. This
is illustrated in Fig. 1(b). To ensure real-time performance and
reduce system complexity, we only consider distortion between
scan frames and neglect distortion caused by a moving target or
within a scan frame, which can be mitigated by increasing the
LiDAR scan rate [20]. The effect of the motion compensation is
depicted in Fig. 3. As a result, we obtain an accumulated point
cloud cluster LIj(k), which accumulates LiDAR scans within
k steps up to the scan-end LiDAR frame at time instant j, using

Fig. 3. RGB image and the up-sampling XYZ image with a kernel size l =
3 and different discretization resolution γ [pixel], (g) is generated using the
smoothing method proposed in [24]. Note that, the FoV of the solid-state LiDAR
is much smaller than the camera, resulting in a significant portion of the XYZ
image being black.

the following equation:

LIj(k) =
(
W
L Tj

)−1 W
L Tj−k+1 LIj−k+1 ⊕ · · · ⊕ LIj . (2)

2) Point Clouds Projection and Up-Sampling: In the projec-
tion phase, the 3D point clouds in the LiDAR frame are projected
onto the 2D image plane while preserving the shape information
of the object with acceptable resolution [24]. For each point LPi,
the corresponding pixel coordinate (ui, vi)

T on the image plane
can be derived as:

Czi [ui, vi, 1]
T = Kin

(
C
LR

LPi +
C
Lp

)
(3)

where Kin is the intrinsic matrix of the camera. However, the
accumulation and projection result is still sparse. We utilize
an up-sampling process [24] to solve it. To improve real-time
performance, we alter the process order from the open-source
upsampling program, thereby reducing the time required to
create intermediate values. The reordered version derives the
up-sampling XYZ image Dxyz by dividing the sum of the
intensity mapsMi element-wise by the sum of the normalization
maps Ni:

Dxyz =

∑M(k)
i=1 Mi∑M(k)
i=1 Ni

(4)

where M(k) is the number of points in LI(k). Furthermore, we
adjust the non-integers pixel coordinate (ui, vi)

T to the nearest
resolution of γ (in pixels), denoted as (ũi, ṽi). We refer to this
process as discretization. It allows us to compute and store the
distance from the pixel position q inside a l × l kernel Ki with
center at (ũi, ṽi)

T to the kernel center beforehand and reuse it
later. Denoting the lower-index (·)q as the intensity value of the
map in the pixel position q ∈ Ki, the expression of Mi and Ni

can be written as:

Mi,q = Kd(‖q − (ũi, ṽi)
T ‖) Kr(

∣∣LPi

∣∣) ∣∣LPi

∣∣
Ni,q = Kd(‖q − (ũi, ṽi)

T ‖) Kr(
∣∣LPi

∣∣) (5)

where Kd is a weight that is proportional to the inverse of the
distance ‖q − (ũi, ṽi)

T ‖, and Kr is a penalization value [24].
A higher resolution γ only results in a slight increase in space
complexity, but it can generate smoother up-sampling results, as
shown in Fig. 3. The time cost comparison will be presented in
Section V, where the above-mentioned two improvements are
designated as Reordered and Discretized.
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B. EKF for Detection Results and Vehicle Velocity Fusing

To provide high-frequency estimations of the target object
position for the MPC, we designed an EKF that fuses the
detection results from YOLO and the detector UAV’s velocity
information output from GPS/IMU.

In implementing the EKF, we assume the target object to be
static. The target object position Wpo ∈ R3 in the world frame
can be expressed from Spo ∈ R3 as,

Wpo = W
S R Spo +

W
S p. (6)

Taking the time derivative of (6) yields,

W ṗo = W
S Ṙ Spo +

W
S R Sṗo +

W
S ṗ. (7)

As we assume W ṗo = 0, (7) can be further written as,

Sṗo = −Λ[ωS ]
Spo − vS . (8)

Linearizing (8) we obtain the prediction equation of the EKF.
The measurement equation of the EKF is expressed as,

Spo = Sp̂o + n (9)

where n∼N{0,Σ0} is the white Gaussian noise with covari-
ance Σ0, and Sp̂o can be estimated by:

Sp̂o = h(uyolo, vyolo,
LI(k)j) (10)

where h is a general nonlinear function and (uyolo, vyolo)
T

denotes the 2D detection result obtained from YOLO.
The detailed implementation of h is outlined in Algorithm 1.

We aim to leverage the accurate 3D information provided by
the LiDAR sensor to estimate Sp̂o. First, a Projection_Filter
function is applied to the point cloud cluster LI(k)j to pick
out LIj

box which falls within the 2D detection result box, using
the projection transformation (3). Next, the point cloud LIj

box is
downsampled and divided into Row × Col ×Dep voxel grids,
which form a large 3D box denoted by VGRow×Col×Dep. This
is accomplished using a VoxelGrid_Filter function. To reduce
computational complexity, the 3D localization problem is con-
verted into a 2D cluster problem by traversing the Row × Col
voxel plane along with the depth dimension. Treating one voxel
as the basic unit, the DBSCAN algorithm [25] is applied to solve
the 2D cluster problem. The first isolated cluster of voxels which
contains more than ε points is treated as the target point cloud
LIj

obj , and its average position can be estimated. However, there
is a time delay τ of several hundred milliseconds from when
LIj

box is produced until the target UAV is detected (time instant
j + τ , which will be omitted for notation simplification). To
mitigate the effects of the time delay, the relative pose of the
sensor, SSjT, is used to correct the average position, resulting in
Sp̂o.

For the uncertainty estimation, the covariance of the 2D
detection result is expressed as [22],

Σ1 =

[
σ2
u 0

0 σ2
v

]
. (11)

The Jacobian of h with respect to (uyolo, vyolo)
T can be written

as,

J =

[
∂h

∂uyolo
,

∂h

∂vyolo

]
∈ R3×2. (12)

Algorithm 1: Observation Function h.

Initialization:Given the point cloud cluster LI(k)j and
the YOLO detection result (uyolo, vyolo)

T .
1: LIj

box = Projection_Filter(LI(k)j , (uyolo, vyolo)
T )

2: VGRow×Col×Dep = VoxelGrid_Filter(LIj
box)

3: for all VGRol×Col,di
, di = 1, 2, . . . , Dep do

4: LIj
obj′ =DBSCAN(VGRow×Col,di

)

5: if LIj
obj′ is isolated then

6: if Number_of_Points(LIj
obj′ ) > ε then

7: LIj
obj =

L Ij
obj′

8: end if
9: end if

10: end for
11: Sp̂j

o = Average_Position(LIj
obj)

12: (Sp̂o, 1)
T = S

WT W
S Tj (Sp̂j

o, 1)
T

And then, the transfer of the uncertainty of (uyolo, vyolo) to the
estimated variable Sp̂o can be derived as,

Σ0 = JΣ1J
T +Σ2 (13)

where the first part JΣ1J
T corresponds to the uncertainty of

the Projection_Filter process, and Σ2 ∈ R3×3 describes the
uncertainty of estimating Sp̂o from the point cloud LIj

box.

IV. PERCEPTION-AWARE MPC DESIGN

We adopt a perception-aware MPC to achieve the active vision
task, which requires the ROI to fall in both the camera and
LiDAR FoV while the UAV moves. Such constraints are derived
as perception constraints in the MPC design.

For an underactuated UAV, the model typically has four inputs
and six degrees of freedom. To reduce the computational burden
of MPC, we set the thrust and angular velocity of the UAV as the
input. Such an assumption is reasonable for small-scale UAVs
as they can track the control angular rate signal in time. As we
assume the angular velocity response of the UAV is fast enough,
the equation of motion (EOM) of the UAV can be simplified
as [26], [27],

W
B ṗ = W

B v

W
B v̇ = − 1

m
W
B RFe3 +

Wg

W
B Ṙ = W

B RΛ[ωB ] (14)

where e3 = (0, 0, 1)T , m ∈ R is the mass of UAV, F ∈ R is
the net thrust, and Wg = (0, 0, g)T is the gravitational accel-
eration. From EOM (14) we can write the state of the sys-
tem as ξ = (WB p,WB v,WB R) ∈ R6 × SO(3), and the input as
u = (ωB , F ) ∈ R4. Finally, we can write the EOM (14) as
ξ̇ = fB(ξ,u).

A. Perception Constraints Induced by LiDAR and Camera

The perception constraints are expressed as the angle between
the main axis (xL for the LiDAR frame and zC for the camera
frame) and the line connecting the center of ROI (i.e.WPo) to the
origin of the sensor frame, as shown in Fig. 1(a). To simplify the
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notation, we introduce a virtual state cβ := cosβ in the system.
From the definition of the main axis of the sensor frame, the
expression of cβ for the camera and LiDAR sensor is,

cβC =
eT3

Cpo

‖Cpo‖ , cβL =
eT1

Lpo

‖Lpo‖ (15)

where e1 = (1, 0, 0)T , ‖ · ‖ stands for Euclidean norm of vector
(·). From (15) we can further obtain the time derivative of cβC

as follows:

˙cβC =
C ṗT

o e3‖CpT
o ‖ − CpT

o e3
d‖Cpo‖

dt

‖Cpo‖2 (16)

in which Cpo can be obtained by coordinate transformation as,

Cpo = C
BR

W
B RT (Wpo − W

B p) + C
Bp (17)

where C
BR and C

Bp are the rotation matrix and translation vector
of C

BT, which is the extrinsic pose between the camera frame
and the body frame. So that ˙cβC can be expressed as the function
of ξ and ωB ,

˙cβC = fβ(ξ,ωB). (18)

Since the relative pose from the camera frame and the LiDAR
frame is fixed, cβC can be expressed from cβL. Then it is not
needed to include both of the two sensors in the perception
constraints. Here, we can express the perception constraints as,

L1 ≤ cβC ≤ L2 (19)

where L1 and L2 are two constants. They are determined from
the overlap between the LiDAR FoV and the camera FoV. From
the relative pose between the two sensors and the overlapping
FoV, an enveloping cone whose main axis is the same with the
main axis of the camera can be obtained. Then L1 and L2 can
also be derived. For brevity the detailed derivation is omitted
here.

By adding the virtual state cβ, the augmented state of the
system is therefore defined as ξaug = (ξ, cβ). The augmented
state equation can therefore be obtained as

ξ̇aug = faug(ξaug,u) :=

[
fB(ξ,u)
fβ(ξ,ωB)

]
. (20)

B. MPC Design

The objective of the MPC is to ensure that the state error
converges while meeting necessary state, input, and perception
constraints. Given the reference state trajectory of the UAV
W
B Rr, WB pr, WB vr, the objective function in the MPC is designed
as

Q(t) = KRtr(I−ER) +Kp‖Ep‖2 +Kv‖Ev‖2+
Kω‖ωB‖2 +KC(cβC − 1)2 +KL(cβL − 1)2 (21)

where the tracking errors are defined asER = W
B R

T

r
W
B R,Ep =

W
B pr − W

B p,Ev = W
B vr − W

B v, and the positive constants KR,
Kp, Kv , Kω , KC , KL represent the weights which can be
adjusted.

Given the objective function, the perception constraints, and
the admissible input and state set, the optimal control problem

Fig. 4. Detector UAV used in the experiments. Our method can also be applied
to UAVs with different FoV distributions, as shown in Fig. 1.

at each time step tj in the MPC is now ready,

min
u(t)

∫ tj+Γ

tj

Q(t)dt

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇aug = faug(ξaug,u)
W
B p(t) ∈ X , W

B v(t) ∈ V,
W
B R(t) ∈ A, ωB(t) ∈ W,

L1 ≤ cβC(t) ≤ L2, F ≤ L3, t ∈ [tj , tj + Γ )

(22)

where X , V , A, W represent the admissible set of position,
velocity, attitude, and angular velocity respectively, positive
constant L3 defines the maximum net thrust, and Γ is the time
horizon.

V. EXPERIMENTS

In order to validate our algorithm and demonstrate its robust-
ness to various environments, we conducted experiments using
an onboard UAV platform to actively detect another independent
UAV in real time.

A. Aerial Platform

As shown in Fig. 4, the detector was equipped with a Livox
Mid-40 LiDAR (38.4◦ × 38.4◦ FoV, 100 Hz), a ZED2 Stereo
camera (10 Hz) whose left monocular camera was used for our
algorithm, a Pixhawk 4 flight controller, a GPS module, and
a Jetson Xavier NX onboard computer. It is noted that both the
solid-state LiDAR and the camera are forward-looking and their
FoVs overlap.

Sensor calibration is fundamental for the multi-sensors sys-
tem. We adopted the Kalibr calibration tool1 to calibrate the
camera’s intrinsic parameters and the extrinsic pose C

BT between
the camera and IMU. For the extrinsic pose C

LT of the cam-
era and LiDAR sensor, we applied the Livox Camera-LiDAR-
Calibration tool.2 All of the calibration work was executed
offline, and the calibration results were regarded as true values
in our experiments.

The software architecture of our system is divided into three
processes: the YOLO detection process, the MPC process, and
the Preprocessing process. The ROS infrastructure is used to
exchange messages between different processes. ACADO 3 is
adopted as the solver of the MPC. To process data from different
sensors with varying computational requirements, the Prepro-
cessing process adopts a multithreading architecture, including

1[Online]. Available: https://github.com/ethz-asl/kalibr
2[Online]. Available: https://github.com/Livox-SDK/livox_camera_lidar_

calibration
3[Online]. Available: http://www.acadotoolkit.org.
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TABLE I
TIME CONSUMPTION OF EACH COMPONENT

TABLE II
DETAILS OF THE RGBXYZ DATASET

the vEKF prediction thread, the vEKF update thread, and a
point cloud preprocessing thread. The point cloud preprocessing
thread performs motion compensation, accumulation, projec-
tion, and up-sampling. Table I shows the time consumption of
the main components of our proposed system when executed on
the onboard computer with k = 40 and a kernel size of l = 5.
The point cloud preprocessing thread is denoted as pc_pre,
and the up-sampling methods mentioned in Section III-A2 are
compared in terms of their time consumption. It is important to
mention that according to the results in Table I, while the pc_pre
method requires 647.42 ms, our improvements in reordering
and discretizing data reduce the computational time roughly by
a factor of 10, resulting in a reduced processing time of only
65.98 ms.

B. Dataset and Networks Training & Evaluation

1) Dataset: We constructed a dataset capturing a hovering
UAV in different scenarios and illumination conditions. The
dataset, outlined in Table II, consists of 4,539 RGBXYZ images
with a resolution of 672 × 376 pixels, and it contains two types
of UAVs: the target UAV and the distractor UAV. A snapshot of
our dataset is presented in the attached video. The detector UAV
as shown in Fig. 4 is used to collect the raw data (RGB images,
point clouds, and pose and velocity information) and generate
the dataset.

We partitioned the dataset into several subsets based on the
lighting conditions, namely good light (GL), low light (LL), and
complete darkness (CD). Each subset contains labeled images
that feature the target UAV, as well as negative samples consist-
ing of background images without the target UAV. Specially, we
designed the negative samples that include the distractor UAV in
good light as another subset, called GL-D. To ensure unbiased
evaluation, we generated the test set using real-life experimental
data and additional datasets that were completely independent
of the training or validation sets.

2) Training: We retain the Darknet-53 backbone network of
Gaussian YOLOv3 by applying early fusion. In order to load
6-channel tensors (RGBXYZ) during the training and testing
process of the multi-modal YOLO, we modified the interface of
YOLO. Additionally, we trained two separate 3-channel YOLO

TABLE III
NETWORK EVALUATION WITH mAP-50 ON THE TEST SET

models, the vision-only and LiDAR-only model. The vision-
only model was trained exclusively using the RGB images from
our dataset, while the LiDAR-only model utilized the upsam-
pling XYZ images obtained from the RGBXYZ dataset. In terms
of the model architecture and other settings, we maintained
consistency among the different models and the original YOLO
framework.

3) Evaluation: The above networks were tested on the test
set and evaluated using the mean average precision at 50%
intersection over union (mAP-50) metric. The result, presented
in Table III, shows that the vision-only network performs
poorly in complete darkness, while the fused method achieves
excellent performance by integrating point cloud information.
The LiDAR-only network struggles to handle the distractor
UAV which has a similar upsampling image as the target UAV. In
contrast, both the vision-only and fused networks demonstrate
robustness in handling the distractor UAV. Additionally,
we observed that the performance of the fused network is
influenced by the discretization resolution of the discretized
upsampling images. Lower resolutions negatively impact the
performance, while higher resolutions, such as γ = 0.1 pixel,
effectively eliminate this impact. Moreover, we noticed that
the vision-only YOLO performs poorly on the GL set, which
contains many challenging scenarios where distinguishing the
target from the background (e.g. both are black) is difficult. On
the other hand, the LL set, collected near a street lamp at night,
benefits from the light reflection on the target, which helps it
stand out from the darker surroundings.

C. Real-World Experiment Results

We tested the proposed algorithm in four series of experi-
ments with various trajectories in different lighting conditions:
straight-line flight (LF) in good lighting (GL) conditions, square
flight (SF) in low lighting (LL) conditions, and circular flights
(CF) in both GL conditions and complete darkness (CD) con-
ditions. The NOKOV motion capture system was utilized to
localize UAVs during indoor flights, while GPS/IMU sensors
were employed for outdoor flights. Noted that the reference yaw
input to the MPC was set to zero for all experiments. A video
of the experiments is attached. The detailed parameters are also
presented in the attached video.

1) LF in GL Conditions: We designed a two-step flight ex-
periment as shown in Fig. 5(a). The detector UAV hovered at
point C, while the target UAV flew from point A to B and
hovered there. The detector UAV then moved to point D and
back to C. Fig. 6(a) shows the MPC tracking results and the
estimated target position in the world frame. The yaw and cosine
curve demonstrates that the active vision algorithm adjusts the
yaw angle of the detector UAV to keep the target in its view.
Moreover, the result demonstrates that the proposed algorithm
can handle moving targets with low velocity (approximately

Authorized licensed use limited to: University of the West of England. Downloaded on January 26,2024 at 18:58:53 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: REAL-TIME MULTI-MODAL ACTIVE VISION FOR OBJECT DETECTION 6577

Fig. 5. Real-world experiments. Red box: the detector UAV and white box:
the target UAV. (a) LF. (b) SF in LL conditions. (c) Indoor experimental
environments. (d) The first-person view of the detector UAV of the circular
flight in CD conditions.

Fig. 6. From top to bottom: the evolution of the position, yaw angle and cosine
of βC , and target UAV positions (expressed in the world frame) estimated by
the vEKF and Algorithm 1 (labeled as YOLO update). (a) LF results. (b) SF
results.

0.3 m/s), even though we designed the vEKF with the assumption
of a static target object.

2) SF in LL Conditions: In this experiment, depicted in
Fig 5(b), the detector UAV flew a square trajectory with the
target UAV remaining hovering at the center. Fig 6(b) shows that
the detector UAV tracked the square trajectory and adjusted the
yaw to face the target in low light conditions. It is worth noting
that at around 40 seconds, there are some erroneous measure-
ments estimated by Algorithm 1 (YOLO update). However, the
vEKF incorporates these measurements while considering the
measurement uncertainty, rather than blindly trusting them. This
highlights the capability of the vEKF to generate high-frequency
and smooth results while also being resilient to incorrect detec-
tions, thereby enhancing the overall robustness of the system.

3) CF in GL Conditions: In this experiment, the detector
UAV tracked two circular trajectories with radii of 3 m and 2 m
under good light conditions. The target UAV remained centered
during lap one but moved outside the circle during lap two. As
shown in Fig. 7(b), on the second lap, the distance between the
UAVs ranged from 2 to 4.5 m.

4) CF in CD Conditions: We performed the second circle
flight experiment with a radius of 2 m in complete darkness,
rendering the camera sensor nearly non-functional, as evidenced
by the RGB image shown in Fig. 5(d). Using the active multi-
modal fusion strategy, the detector UAV successfully detected
the target and adjusted the yaw angle while tracking the circle
reference trajectory, as shown in Fig. 8.

5) Analysis: It is seen that the active multi-modal detection
algorithm achieves success in all the above four scenarios.
Table IV summarises the Root Mean Square Error (RMSE) and

Fig. 7. CF results in GL conditions. (a) Trajectories of two UAVs in the xy
plane. The blue line: the estimated target UAV trajectory. The arrows represent
the heading direction of the detector UAV. The circles, each with a different color,
depict the positions of the detector and target UAVs at various time instants.
Two circles with the same color correspond to the same time instant. (b) The
estimated target positions. The NOKOV mocap system provides ground truth
for evaluation. Yellow line: the ground-truth distance between two UAVs.

Fig. 8. CF results in CD conditions. (a) The position, yaw angle, and cosine
of βC . (b) The estimated target positions.

TABLE IV
POSITION TRACKING ERROR OF DETECTOR UAV UNDER MPC, AND

ESTIMATION ERROR OF TARGET UAV FROM VEKF, EXPRESSED IN THE

WORLD FRAME

Standard Deviation (STD) of the tracking error for the desired
trajectory under the MPC, and the estimation error of the target
UAV position obtained by the vEKF, respectively. The MPC
tracking error increases as the reference trajectory speed rises.
The vEKF demonstrates consistent tracking accuracy across
different lighting levels. Specially, it is worth noting that even
in challenging conditions (CD conditions), the detector UAV
can effectively detect the target and adjust the yaw angle while
tracking the reference trajectory. This emphasizes the advan-
tages of our multi-modal framework compared to methods that
rely solely on vision in challenging environments [5], [6], [21].
However, it is also noticed that there is a limitation of our
proposed approach. Tracking a fast-moving target is a challenge
using our approach, as the vEKF is designed based on the
assumptions of static targets. Moreover, our proposed approach
suffers from the detection network’s latency which also degrades
our system’s performance on a moving target.
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VI. CONCLUSION

In this letter, we present a multi-modal data fusion framework
for active vision detection on small-scale UAVs. The real-time
problem has been investigated by carefully designing the algo-
rithms to fuse the point cloud, image, and pose/velocity. The pro-
posed system still requires further improvements in tracking fast-
moving targets. It has been verified with real-life experiments
in different illumination scenarios. Extensive experiments show
that our method efficiently improves the real-time performance
by reducing the computational time of data pre-processing by a
factor of 10. Also, the fusion network shows better performance
than the single-sensor network in challenging scenarios, which
reaches 94.6 mAP on the test set. Since our approach can be used
for a generic LiDAR camera fusion domain, our future work is
to apply our approach to other 3D perception tasks, such as
semantic segmentation.
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